Branimation

A proposal for tool development to assist animation of Event-B specifications with Brama

Atif Mashkoor

(atif.mashkoor@loria.fr)

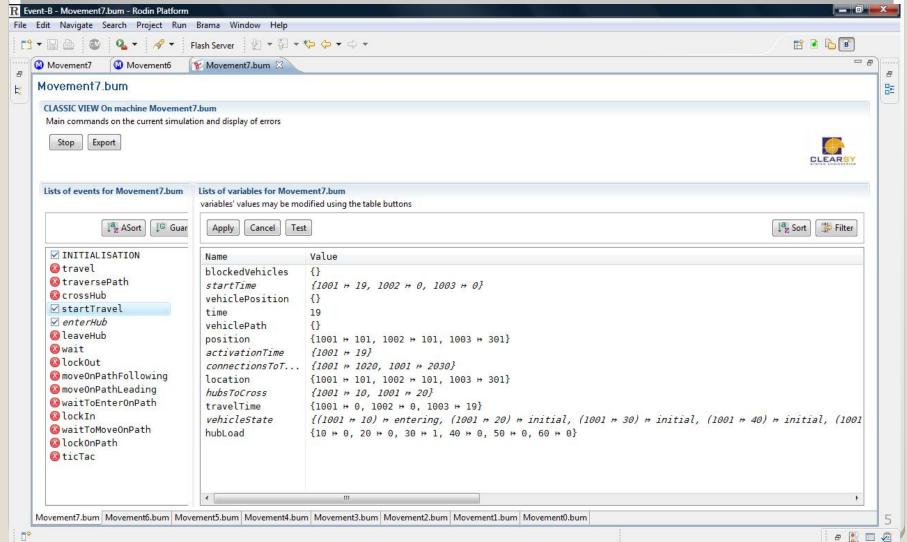
(LORIA, France)

Rodin User and Developer Workshop 15-17 July 2009 Southampton, UK

Table of contents

- The aim
- The Brama
- The limitations of Brama
- The heuristics
- The Branimation tool
- The conclusion and future work

The main aim:


- A stepwise validation process complemented by animation
 - Help in design of complex specifications
 - Early requirement validation
 - Early user involvement
 - Quick and cheap

Brama

- Animator for Event-B specifications
- Eclipse based plug in for Rodin platform
- Graphical animation of specifications with Flash tools
- Demonstration of behavior of the system by firing of events (enabled/disabled)
- Supply of numerical values to constants

Brama snapshot

Limitations

- 1. "Finite" clause
- Interpretation of quantifications as iterations
 - 1. Operation on finite lists
 - 2. Lack of assurance of animation despite list finiteness
 - 3. Typing information of sets involved in iteration
- 3. Dynamic bindings in substitutions
 - 1. Dynamic mapping of variables
 - 2. Dynamic function computation

Limitations (cont.)

- Analytic function computation in Contexts
 - 1. Analytical function computation in events
 - Case analysis functions expression in a single event
 - Evaluation of invariants based on function computations
- Limited communication with external graphical animation environment

The heuristic pattern

Heuristic Pattern

Symptom: What reveals the situation e.g. Brama error

message

Transform: The expression schema in the original specification

and its transformed counterpart

Caution: Description of the applicability conditions, possible

effects, and precautions to follow

Justification: A rigorous argument about the validity of the

transformation

The heuristics

- 1 Remove the axiom "finite" from the specification
- 2.1 Specify the finiteness of a quantified domain
- 2.2 Generalize expressions involving complex iterations
- 2.3 Explicitly provide the typing information of all sets used in an axiom
- 3.1 Avoid dynamic mapping of variables in substitutions

The heuristics (cont.)

3.2 Avoid dynamic function computation in substitutions

- 4.1 Use Inlining
- 4.2 Replicate events
- 4.3 Remove invariants
- 5. Introduce observation variables

2.2 Generalization of complex iterations

Symptom: Impossibility to build the iterators of the predicate

Pattern: Take super-set of the expression

- Original var = $\{x \mid \exists n . n \in \mathbb{N}1 \land x \in 1 .. n \rightarrow y\}$
- Transformed var $\in P(\mathbb{N} -+> y)$

Caution:

- Some proof obligations may not be discharged
- Vigilant input of values

Justification:

- Vigilant input of values ensures same behavior
- Since original spec is verified, so transformed spec has the same properties

The Branimation tool

- To implement the proposed heuristics
- May not be fully automated
- Human intervention
- Simple tasks
 - removal of finite clause
 - provision of typing information
 - event replication

Conclusion and future work

- Animation constraints and heuristics
- Growing list of heuristics
- Needed development of supporting tool
- Checking of specification with ProB