
Event Model Decomposition
(version 1.3 April 2009)

J.R. Abrial ETHZ

1 Introduction

Developing an event model by successive refinements usually starts with very few events (sometimes
even a single event) and with a very few state variables. On the contrary, it usually ends up with a last
refinement step dealing with many events and many variables. This is because one of the most important
mechanism of the Event-B approach consists in introducing new events during refinement steps. The re-
finement mechanism is also used at the same time to significantly enlarge the number of state variables.

At some point, we might have so many events and so many state variables that the refinement pro-
cess might become quite heavy. And we may also figure out that the refinement steps we are trying to
undertake are not involving any more the totality of our system (as was the case at the beginning of the
development), only a few variables and events are concerned, the others playing a passive role only.

The idea of model decomposition is thus clearly very attractive: it consists in cutting an heavy event
system into smaller pieces which can be handled more comfortably than the whole. More precisely, each
piece should be able to be refined independently of the others. But, of course, the constraint that must be
satisfied by this decomposition is that such independently refined pieces could always (in principle) be
easily re-composed. This re-composition process should then result in a system which could have been
obtained directly without the decomposition, which thus appears to be just a kind of “divide-and-conquer”
artefact.

But this is clearly not the only interesting methodological outcome of decomposition. It also allows us
to build up the architecture of our future system by dividing it into independent components with well
defined relationship. This last important point will be fully explained in what follows.

This paper contains the feasibility study of such a mechanism. After proposing an informal definition of
decomposition in the next section, we outline the methodological outcome and constraints of this approach
(sections 3). We then present its main difficulty (section 4) and propose a solution to it (section 5), which
nevertheless presents a certain limitation (as explained in section 5.1). In section 6, a short example shows
the mechanism at work. In section 7, we present another example explaining how the main limitation
of this approach, as described in section 5.1, can be overcome. The proof that guarantees a well-defined
mathematical approach to decomposition is developed in the Appendix.

2 Informal Definition

Decomposing an event modelM is defined as follows:

1. M is split into several sub-models, say N , . . . , P .

2. The events ofM are partitioned and the elements of this partition form the events of the sub-models.

3. We shall see in section 4 how the variables of modelM are also distributed among the sub-models.

4. These sub-models are then refined several times independently yielding eventually NR, . . . , PR.

1



5. These refined models might be put together to form a re-composed modelMR.

6. The re-composed modelMR must be guaranteed to be a refinement ofM.

This process is illustrated in the following diagram:

r

Decomposition Refinement Recomposition

M →


N → NR

· · ·

P → PR

 → MR

It is important to notice here that point 5 above (the recomposition) will never be performed in practice.
One has only to figure out that it can be done and that the refinement condition stated in point 6 (MR is
a refinement ofM) must then be satisfied.

3 Methodological Outcome and Constraints of Decomposition

This decomposition process may play five important practical methodological roles:

1. It is certainly easier to refine sub-models N , . . . , P independently rather than together.

2. Refinements of sub-models N , . . . , P can be further decomposed in the same way, and so on.

3. Sub-models N , . . . , P could already possess some refinements able to be reused in several projects.

4. Decomposition is the basis for building the architecture of the final system we want to build.

5. A consequence of decomposition is that several independent users can work on the sub-models

Point 3 above is methodologically very important. It shows how decomposition and composition are tied
together. In other words, we decompose in order to be able to compose several existing models taken off
the shelf. By having a decomposition phase done before the composition one, we ensure that the compo-
sition leads to a correct global model, namely the one presented before the decomposition.

Our decomposition approach shall obey two main constraints:

1. We must define a process that is totally robust mathematically speaking.

2. We do not want to modify in any way the mathematical definition and concept of refinement.

4 The Main Difficulty: Variable Distribution

The difficulty with the variable distribution is better illustrated with a simple example.

Suppose that we have a certain model, M, with four events e1, e2, e3 et e4. We would like to de-
compose M into two separate models: (1) N dealing with events e1 and e2, and (2) P dealing with

2



events e3 and e4. We are interested in doing this decomposition because we know that there are some
nice refinements that can be performed on e1 and e2 and, independently, on e3 and e4.

But in doing this event partition we must also perform a certain variable distribution. Suppose that we
have three variables v1, v2 and v3 inM. Like the events, the variables must be split too. For instance, we
might put v1 and v2 with N (because e1 and e2 are supposedly working with them and not with v3). As
a result, v3 goes, quite naturally, with P . But the difficulty here is that e3 and e4, which work with v3,
might also work with v2. So, besides v3, P certainly also requires v2 to deal correctly with e3 and e4. In
summary: (1) e1 and e2 work with v1 and v2, and (2) e3 and e4 work with v2 and v3. So N must have
variables v1 and v2 and P must have variables v2 and v3. Variable v2 is common to both N and P .

The problem seems unsolvable since, apparently, there will always be some variables that are needed
in several decomposed models. In other words, the splitting of the events will always conflict with that
of the variables. Notice however that this should not be surprising: after all, variable v2 is simply the
communication channel situated between sub-models N and P .

So, the question of common variables, v2 in our example, is unavoidable. How are we going to solve
this difficulty?

5 The Solution: Shared Variables and External Events

5.1 Shared Variables

We have no choice: the shared common variables must clearly be replicated in the various components of
our decomposition. Notice that the shared variables in question can be modified by any of the components:
we do not want to make any specialization of the components, some of them being only allowed to read,
while some other to write these variables. We know that it is not possible in general.

The new difficulty that arises immediately at this point concerns the problem of refinement. In princi-
ple, each component can freely data-refine its state space. So that the same replicated variable could, in
principle, be refined in one way in one component and differently in another: this is not acceptable since
then the two components cannot communicate as they are not using the same conventions on the shared
variable.

The price to pay in order to solve this difficulty is to give the replicated variables a special status in the
components where they stay. A shared variable has a simple limitation: it must always be present in the
state space of any refinement of the component. In other words, a shared variable cannot be data-refined.
We shall see in section 7 how this limitation can be partially overcome.

Notice that there is no theoretical impossibilities to have the shared variables being refined. But then
again the same shared variable has to be refined in the same way in each independent sub-model. This is
not very convenient as we want the sub-models to be genuinely independent.

5.2 External Events

The notion of shared replicated variables we introduced in the previous section is not sufficient. Suppose
that in a certain component a shared variable is only read, not written. The trouble with that shared vari-
able is that it has suddenly become a constant in that component, which is certainly not what we want.

What we need thus in each component, is a number of additional events simulating the way our shared
variables are handled in the non-decomposed model. Such events are called external events. Each of them
mimics, using the shared variables only, an event of the non-decomposed model that modifies the shared
variables in question. The reader has understood: mimic simply means “is an abstraction of”. Of course
such external events cannot be refined in their component. In section 5.4 we explain how the external

3



events are practically constructed.

Notice that there is a distinction to be made between a shared variable and an external event. A shared
variable is shared in all sub-models where it can be found, whereas an external event always has a non-
external counterpart elsewhere. An event, however, can be external in several sub-models.

Notice finally that the external events are just modeling artefacts. In fact, the final code produced out of
the last refinements of the sub-models does not contain any translation attached to the external events.

5.3 About the Invariants
In previous sections, we explained how the events and the variables are distributed among the sub-models.
But we did not mentioned the invariants. Their destination is simple:

1. An Invariant dealing with the private variables of a sub-model is copied in that sub-model.

2. An invariant involving a shared variable only is copied in the sub-models where this variable is shared.

3. An invariant involving a shared variable together with other variables is not copied.

5.4 Final Recomposition
The re-composition of refinements of the various sub-models is now extremely simple. We put together
all the variables of the individual sub-models (with the various shared variables incorporated only once)
and we simply throw away all the external events of each sub-model.

It remains now for us to prove that the re-composed model is indeed a refinement of the initial one.
Notice again that this re-composition will never be done: it is simply a thought experiment. In other
words, it is just something that could be done, and which must then yield a refinement of the initial
non-decomposed model. The proof that the re-composition is indeed a refinement of the original non-
decomposed model is shown in the Appendix.

5.5 Practical Construction of External Events
An external event is the projection of the original event on the state of the sub-model. Practically, this can
be done in a very systematic manner by replacing the disappearing variables by simple parameters of the
external events. This can be illustrated on a simple example. Let e2 be an event of the original model.
Suppose that the original model deals with variables v1, v2, and v3. Suppose that the event e2 does not
work with variable v3. Here is thus the event e2:

e2
when

G(v1, v2)
then

v1 := E(v1, v2)
v2 := F (v1, v2)

end

The projection of e2 on a state made of variable v3 together with shared variable v2 is as follows:

external_e2
any x1 where

G(x1, v2)
then

v2 := F (x1, v2)
end

4



As can be seen, the variable v1 occurring in e2 has been replaced by the parameter x1 and the assignment
to v1 in e2 has disappeared. It might sometimes be necessary to add an additional guard in order to define
the type of parameter x1. In the more general case where the action in non-deterministic as in:

e2
when

G(v1, v2)
then

v1, v2 :| P (v1, v2, v1′, v2′)
end

then the projection of e2 on a state made of variable v3 together with shared variable v2 is as follows:

external_e2
any x1 where

G(x1, v2)
then

v2 :| ∃y1 · P (x1, v2, y1, v2′)
end

5.6 Tool Requirements for Decomposition

The requirements for a tool able to help users decomposing a model are rather simple:

1. Given a model to be decomposed, the user must be able to designate the various elements of the
decomposed sub-models: what are their private events, what are their external events, what are their
private variables, what are the shared variables.

2. The tool must verify that all events and all variables are indeed well partitioned and distributed.

3. The tool must then generate the external events (as shown in the previous section) to be incorporated
in each decomposed sub-model.

4. Finally, the tool must generate the various independent decomposed sub-model.

Notice that some extensions to the basic Rodin Platform tools have to be undertaken. We have to
introduce the notion of shared variables in a model as well as that of external events. Let us recall that
shared variables and external events must not be refined.

6 A Short Example

In this section,we propose a short example. It is a rather toyish and very artificial example however. Its
role is simply to illustrate what we have described so far.

6.1 The Initial Model

In an initial modelM, we have three variables a, b, and c handling some natural number values. These
variables are “controlled” by three boolean variables m, n, and p respectively. We also have four events
named in_a, a_2_b, b_2_c, and out_c. These events respectively insert a new value in a (in_a), move
values from a to b (a_2_b), and from b to c (b_2_c), and finally remove values from c (out_c). This is
shown in the following diagram:

5



in_a a_2_b b_2_c out_c
−→ a −→ b −→ c −→

The moving of the values should respect some constraints handled by the boolean control variables m,
n, and p. When the control variable m is equal to TRUE, this means that the value of a is fresh so that it
can be sent to b. This, however, can only be performed provided the value of b is old, meaning that it has
already been sent to c: this fact is recorded by the value of n, the boolean variable controlling b, when it
is equal to FALSE. Boolean variable p play a similar role with c. Next are the typing of the variables and
the definition of the various events:

variables: a
m
b
n
c
p

inv0_1: a ∈ N
inv0_2: m ∈ BOOL
inv0_3: b ∈ N
inv0_4: n ∈ BOOL
inv0_5: c ∈ N
inv0_6: p ∈ BOOL

INIT
a := 0
m := FALSE
b := 0
n := FALSE
c := 0
p := FALSE

in_a
when

m = FALSE
then

a :∈ N
m := TRUE

end

a_2_b
when

m = TRUE
n = FALSE

then
b := a
m := FALSE
n := TRUE

end

b_2_c
when

n = TRUE
p = FALSE

then
c := b
n := FALSE
p := TRUE

end

out_c
when

p = TRUE
then

p := FALSE
end

6.2 Preparing the Decomposition

Our purpose is now to decompose the model M presented in previous section into two separate sub-
modelsN andP as shown in the following figure. Sub-modelN contains events in_a and a_2_b together
with variables a and m, whereas sub-model P contains events b_2_c and out_c together with variables
c and p:

m
a

p
c

b_2_c

out_c

in_a

a_2_b

N P

b

n

Variables b and n are the shared variables forming the channels between the two sub-models. We can
see that sub-model N modifies the shared variable b (write) while sub-model P only access it (read).
However, both sub-models modify and access the shared variable n. In other words, the "channel" n is
full-duplex.

It might be interesting to simplify this and replace the full-duplex channel n by two simple channels. So,
before doing our decomposition we might first refine our modelM to modelM1. We replace the variable
n by two bit variables r and s. The variable r is modified by the event a_2_b, whereas the variable s is
accessed only by this event. We have a symmetric situation with event b_2_c. Here are the variables and
events of refinementM1:

6



variables: a
m
b
c
p
r
s

inv1_1: r ∈ {0, 1}
inv1_2: s ∈ {0, 1}
inv1_3: r = s ⇔ n = FALSE

INIT
a := 0
m := FALSE
b := 0
c := 0
p := FALSE
r := 0
s := 0

Invariant inv1_3 shows how concrete variables r and s are glued to the abstract variable n. Notice that
this invariant could have been written equivalently as n = bool(r 6= s).

in_a
when

m = FALSE
then

a :∈ N
m := TRUE

end

a_2_b
when

m = TRUE
r = s

then
b := a
m := FALSE
r := 1− r

end

b_2_c
when

r 6= s
p = FALSE

then
c := b
s := 1− s
p := TRUE

end

out_c
when

p = TRUE
then

p := FALSE
end

What is shown here with variables r and s is the classical alternating bit protocol.

6.3 The Decomposition

We now propose the following decomposition with simple channels only:

m
a

p
c

b_2_c

out_c

in_a

a_2_b

N P

b

r

s

The model N has proper events in_a and a_2_b, which are thus exact copies of events bearing the
same names in model M1. Moreover, the external event external_b_2_c, is then a projection of the
event bearing the name b_2_c in the initial modelM1. ModelN has five variables a, m, b, r, and s. The
last three are shared as indicated below.

variables: a
m

shared: b
r
s

inv_N0_1: a ∈ N
inv_N0_2: m ∈ BOOL
inv_N0_3: b ∈ N
inv_N0_4: r ∈ {0, 1}
inv_N0_5: s ∈ {0, 1}

INIT
a := 0
m := FALSE
b := 0
r := 0
s := 0

Notice that in the INIT event, the initialization of the variable s is rather an external initialization.

7



in_a
when

m = FALSE
then

a :∈ N
m := TRUE

end

a_2_b
when

m = TRUE
r = s

then
b := a
m := FALSE
r := 1− r

end

external_b_2_c
when

r 6= s
then

s := 1− s
end

Notice that the event external_b_2_c should be the following according to what has been said in section
5.4, but this is clearly equivalent to what we wrote above because the parameter xp has no influence on
the action and the guard ∃xp · xp = FALSE holds trivially:

external_b_2_c
any xp where

xp = FALSE
r 6= s

then
s := 1− s

end

Next is our second decomposed model P . It is organized symmetrically to N . Likewise, the external
event external_a_2_b is a projection of the event a_2_b inM1.

variables: c
p

shared: b
r
s

inv_P0_1: c ∈ N
inv_P0_2: p ∈ BOOL
inv_P0_3: b ∈ N
inv_P0_4: r ∈ {0, 1}
inv_P0_4: s ∈ {0, 1}

INIT
c := 0
p := FALSE
b := 0
r := 0
s := 0

Similarly to what we observed above for modelN , here in the INIT event the initialization of the variable
r is rather an external initialization.

external_a_2_b
any x where

x ∈ N
r = s

then
b := x
r := 1− r

end

b_2_c
when

r 6= s
p = FALSE

then
c := b
s := 1− s
p := TRUE

end

out_c
when

p = TRUE
then

p := FALSE
end

6.4 Refinements

We now refineN toNR. The refinement consists of adding a new variable d. The value of the variable a
is gradually moved to d by incrementing d. For this, we introduce a new convergent event named inc_d.
Next are the events of NR. Notice that the event external_b_2_c is not modified).

8



in_a
when

m = FALSE
then

a :∈ N
m := TRUE

end

inc_d
status

convergent
when

m = TRUE
d 6= a

then
d := d + 1

end

a_2_b
when

m = TRUE
r = s
d = a

then
b := d
m := FALSE
r := 1− r
d := 0

end

external_b_2_c
when

r 6= s
then

s := 1− s
end

In order to prove the convergence of the event inc_d, we have to exhibit a variant, which is clearly the
following:

variant_NR: a− d

Now proving that this variant is a natural number requires that d is always less than or equal to a. In turn,
proving this invariant requires an additional invariant as shown below:

inv_NR_1: d ≤ a

inv_NR_2: m = FALSE ⇒ d = 0

We now refine similarly P to PR. The refinement consists of adding a new variable e. The value of
the variable b is gradually moved to e by incrementing e. For this, we introduce a new convergent event
inc_e. Next are the events of PR. Notice that the event external_a_2_b is not modified.

external_a_2_b
any x where

x ∈ N
r = s

then
b := x
r := 1− r

end

inc_e
status

convergent
when

n = TRUE
e 6= b

then
e := e + 1

end

b_2_c
when

r 6= s
p = FALSE
e = b

then
c := e
s := 1− s
p := TRUE
e := 0

end

out_c
when

p = TRUE
then

p := FALSE
end

Similar considerations as done for the previous refinement lead to the following variant and invariants:

variant_PR: b− e
inv_PR_1: e ≤ b

inv_PR_2: n = FALSE ⇒ e = 0

9



6.5 Summary of the Development

The development of this short example can be summarized in the following diagram. We first did a re-
finement of our initial model M to M1 (thus preparing the interface), then we decomposed M1 into
sub-models N and P , and finally we refined our two sub-models to NR and PR respectively:

M
↓
M1

↙ ↘
N P
↓ ↓
NR PR

7 Another Example

The example presented in this section is a little less simple than the one presented in previous section.
However, it is still clearly a bit artificial: we want to show how we can proceed in order to be able to
refine the "natural" channel between two components. Contrarily to the previous example, we perform
several refinements on the non-decomposed model before eventually decomposing it. The goal of these
refinements is to construct carefully the interface between the future decomposed sub-models.

7.1 Initial Model

In this first model, we define a context dealing with two abstract sets: QUESTION and RESPONSE.
We also have a constant, answer, linking QUESTION to RESPONSE:

sets: QUESTION
RESPONSE

constants: answer

axm_0_1: answer ∈ QUESTION →RESPONSE

The model itself is made of two variables: question and response_0. These variables denote the set of
questions and responses so far encountered. An obvious invariant, inv0_2, relates both variables. We have
a single event question_response which does the job in one shot.

variables: question
response_0

inv0_1: question ⊆ QUESTION

inv0_2: response_0 = answer[question]

question_response
any q where

q /∈ question
then

question := question ∪ {q}
response_0 := response_0 ∪ {answer(q)}

end

10



7.2 First Refinement

In this refinement, we introduce a channel, channel_0, between the sets question and response. The
single event of previous abstract model is split into two events named prepare_question and pro-
duce_response. The former refines the abstract event question_response, while the latter is a new
convergent event (with variant the finite set channel_0). Notice that abstract variable response_0 is
data-refined to variable response with an obvious gluing invariant as shown in inv1_2.

variables: question
response
channel_0

inv1_1: channel_0 ⊆ question

inv1_2: response_0 = response ∪ answer[channel_0]

inv1_3: finite(channel_0)

prepare_question
refines

question_response
any q where

q /∈ question
then

question := question ∪ {q}
channel_0 := channel_0 ∪ {q}

end

produce_response
status

convergent
any q where

q ∈ channel_0
then

channel_0 := channel_0 \ {q}
response := response ∪ {answer(q)}

end

variant1: channel_0

At this point, it might be tempting to decompose this refinement into two sub-models with the shared
variable channel_0 in between them:

channel_0
question response

We shall not do that however because our intention is to later consider that channel_0 is a simple abstrac-
tion for a far more complicated middleware component. In other words, we want to be able to later refine
channel_0. The idea is to encapsulate channel_0 in its own component so that the decomposition will
be as shown in the following figure:

responsequestion
?

channel
?

The purpose of the next refinements is to prepare the yet unknown interfaces between these components.

11



7.3 Second Refinement

In this refinement, we introduce a buffer, buffer_2 on the right hand side of the channel channel_0,
which is data-refined to channel_1 (with gluing invariants inv2_1 and inv2_2). The buffer is controlled
by the boolean variable bool_2.

variables: question
response
channel_1
buffer_2
bool_2

inv2_1: bool_2 = TRUE⇒ channel_0 = channel_1

inv2_2: bool_2 = FALSE⇒ channel_0 = channel_1 ∪ {buffer_2}

inv2_3: bool_2 = FALSE⇒ buffer_2 /∈ channel_1

prepare_question
any q where

q /∈ question
then

question := question ∪ {q}
channel_1 := channel_1 ∪ {q}

end

produce_response
when

bool_2 = TRUE
with

q = buffer_2
then

bool_2 := FALSE
response := response ∪ {answer(buffer_2)}

end

A new convergent event read_question is introduced (with variant the finite set {bool_2,TRUE}).

read_question
status

convergent
any q where

q ∈ channel_1
bool_2 = FALSE

then
bool_2 := TRUE
channel_1 := channel_1 \ {q}
buffer_2 := q

end

variant2: {bool_2,TRUE}

7.4 Third Refinement

Similarly to what has been done in the previous refinement, we introduce now a buffer on the left hand
side of the channel.

12



variables: question
response
channel
buffer_1
bool_1
buffer_2
bool_2

inv3_1: bool_1 = TRUE⇒ channel_1 = channel

inv3_2: bool_1 = FALSE⇒ channel_1 = channel ∪ {buffer_1}

inv3_3: bool_1 = FALSE⇒ buffer_1 /∈ channel

prepare_question
any q where

q /∈ question
bool_1 = FALSE

then
question := question ∪ {q}
bool_1 := TRUE
buffer_1 := q

end

write_question
status

convergent
when

bool_1 = TRUE
then

bool_1 := FALSE
channel := channel ∪ {buffer_1}

end

read_question
any q where

q ∈ channel
bool_2 = FALSE

then
bool_2 := TRUE
channel := channel \ {q}
buffer_2 := q

end

produce_response
when

bool_2 = TRUE
then

bool_2 := FALSE
response := response ∪ {answer(buffer_2)}

end

variant3: {bool_1,FALSE}

7.5 Fourth Refinement

In this refinement, we introduce alternating bits as we did in the previous example.

13



variables: question
response
channel
buffer_1
buffer_2
bit_11
bit_12
bit_21
bit_22

inv4_1: bit_11 ∈ {0, 1}

inv4_2: bit_12 ∈ {0, 1}

inv4_3: bit_11 = bit_12 ⇔ bool_1 = FALSE

inv4_4: bit_21 ∈ {0, 1}

inv4_5: bit_22 ∈ {0, 1}

inv4_6: bit_21 = bit_22 ⇔ bool_2 = FALSE

prepare_question
any q where

q /∈ question
bit_11 = bit_12

then
question := question ∪ {q}
bit_11 := 1− bit_11
buffer_1 := q

end

write_question
when

bit_11 6= bit_12
then

bit_12 := 1− bit_12
channel := channel ∪ {buffer_1}

end

read_question
any q where

q ∈ channel
bit_21 = bit_22

then
bit_21 := 1− bit_21
channel := channel \ {q}
buffer_2 := q

end

produce_response
when

bit_21 6= bit_22
then

bit_22 := 1− bit_22
response := response ∪ {answer(buffer_2)}

end

7.6 Decomposition

At this point, we are now ready to perform our decomposition according to the following schemata:

question

buffer_1

bit_11

bit_12
responsechannel

buffer_2

bit_21

bit_22

14



Left Component.

variables: question
shared: buffer_1

bit_11
bit_12

invL_1: question ⊆ QUESTION

invL_2: buffer_1 ∈ QUESTION

invL_3: bit_11 ∈ {0, 1}

invL_4: bit_12 ∈ {0, 1}

prepare_question
any q where

q /∈ question
bit_11 = bit_12

then
question := question ∪ {q}
bit_11 := 1− bit_11
buffer_1 := q

end

external_write_question
when

bit_11 6= bit_12
then

bit_12 := 1− bit_12
end

Right Component.

variables: response
shared: buffer_2

bit_21
bit_22

invR_1: response ⊆ RESPONSE

invR_2: buffer_2 ∈ QUESTION

invR_3: bit_21 ∈ {0, 1}

invR_4: bit_22 ∈ {0, 1}

external_read_question
any q where

q ∈ QUESTION
bit_21 = bit_22

then
bit_21 := 1− bit_21
buffer_2 := q

end

produce_response
when

bit_21 6= bit_22
then

bit_22 := 1− bit_22
response := response ∪ {answer(buffer_2)}

end

Middle Component.

15



variables: channel
shared: buffer_1

bit_11
bit_12
buffer_2
bit_21
bit_22

invM_1: channel ⊆ QUESTION

invM_1: buffer_1 ∈ QUESTION

invM_2: bit_11 ∈ {0, 1}

invM_3: bit_12 ∈ {0, 1}

invM_4: buffer_2 ∈ QUESTION

invM_5: bit_21 ∈ {0, 1}

invM_6: bit_22 ∈ {0, 1}

write_question
when

bit_11 6= bit_12
then

bit_12 := 1− bit_12
channel := channel ∪ {buffer_1}

end

read_question
any q where

q ∈ channel
bit_21 = bit_22

then
bit_21 := 1− bit_21
channel := channel \ {q}
buffer_2 := q

end

external_prepare_question
any q where

q ∈ QUESTION
bit_11 = bit_12

then
bit_11 := 1− bit_11
buffer_1 := q

end

external_produce_response
when

bit_21 6= bit_22
then

bit_22 := 1− bit_22
end

Appendix

As announced in section 5.4, the proof that the re-composition is indeed a refinement of the original non-
decomposed model is now proposed here. We first present the mathematical framework, then we state
what we have to prove, and finally we prove it. Note that the proofs presented in this Appendix have been
performed automatically on the Rodin Platform.

We suppose that the initial non-decomposed model M has a state constructed on a set S. We are
concerned with an event e mathematically represented by a binary relation from S to S:

e ∈ S↔ S

For simplifying things without loss of generality, we envisage the decomposition of modelM into two
sub-models N and P only. These two sub-models have states constructed on two sets T and U respec-
tively.

The decomposition is materialized by means of two projections functions p and q from S to T and S to
U respectively. These functions are total surjections:

16



p ∈ S � T

q ∈ S � U

The reason for these functions to be total surjections is that in a more concrete setting p and q are compo-
sitions of proper Cartesian product projections prj1 and prj2, which are both total surjections.

The event e of modelM is projected on the two sub-models. This results in two events mathematically
represented by two binary relations a and b:

a ∈ T ↔ T

b ∈ U ↔ U

These relations are the projections of relation e. They are formally defined as follows:

a =̂ p−1 ; e ; p

b =̂ q−1 ; e ; q

The sub-model N is refined to a model NR with a state constructed on a set X . The refinement is done
by means of a total binary relation l from X to T . Likewise, the sub-model P is refined to a model PR
with a state constructed on a set Y . The refinement is done by means of a total binary relation m from Y
to U :

l ∈ X ←↔ T

m ∈ Y ←↔ U

These relations are assumed to be total: it is a fundamental assumption used in the refinement theory as
presented in chapter 14 of the book on Event-B.

Events a and b are refined to events ar and br. The forward refinement of these events is mathematically
represented by the following predicates:

l−1 ; ar ⊆ a ; l−1

m−1 ; br ⊆ b ; l−1

Again, these refinement conditions come from chapter 14 of the book on Event-B (forward refinement).

The recomposition of refinementsNR and PR results in a modelMR whose state is constructed on a
set Z. This set is projected on the two sets X and Y by means of two total surjective projections functions
u and v:

u ∈ Z � X

v ∈ Z � Y

We now re-compose an event er on modelMR

er ∈ Z↔ Z

by means of the two events ar and br. The event er is formally defined as follows:

er =̂ (u ; ar ; u−1) ∩ (v ; br ; v−1)

17



Here we construct the re-composed event er out of the existing refinement events ar and br. This is the
reason why we used an intersection.

Putting together the two refinement relations l and m, we get a refinement relation n:

n ∈ Z←↔ S

which is defined as follows:

n =̂ (u ; l ; p−1) ∩ (v ; m ; q−1)

Relation n is indeed a total relation as both relations u ; l ; p−1 and v ; m ; q−1 are total. For example,
u ; l ; p−1 is total because u is a total function, l is total relation, and p is a surjective function (hence p−1

is total relation).

All this can be illustrated on the following diagram:

YZX

ar er br
l n m

u v

a e b

p q

u v

p q
n ml

T S U

Now, we have to prove the following theorem stating that er is a refinement of e, that is:

n−1 ; er ⊆ e ; n−1

The proof is made of two parts. First, we prove:

n−1 ; er ⊆ r

and then we prove:

r ⊆ e ; n−1

where r is a relation from S to Z (as are both relations n−1 ; er and e ; n−1):

r ∈ S→ Z

defined as follows:

r = (p ; p−1 ; e ; p ; l−1 ; u−1) ∩ (q ; q−1 ; e ; q ; m−1 ; v−1)

18



Proof of the First Part. The proof of the first part can be conducted in a completely algebraic form.

PROOF

n−1 ; er
= definition of er
n−1 ; ((u ; ar ; u−1) ∩ (v ; br ; v−1))
⊆ set theory
(n−1 ; u ; ar ; u−1) ∩ (n−1 ; v ; br ; v−1)
⊆ lemmas
(p ; l−1 ; ar ; u−1) ∩ (q ; m−1 ; br ; v−1)
⊆ refinements of a and b
(p ; a ; l−1 ; u−1) ∩ (q ; b ; m−1 ; v−1)

= definitions of a and b
(p ; p−1 ; e ; p ; l−1 ; u−1) ∩ (q ; q−1 ; e ; q ; m−1 ; v−1)

The previous proof relies on two lemmas. Here is the proof of the first one (the second one is similar).

PROOF of lemma: n−1 ; u ⊆ p ; l−1

n−1 ; u
= definition of n
((p ; l−1 ; u−1) ∩ (q ; m−1 ; v−1)) ; u
⊆ set theory
(p ; l−1 ; u−1 ; u) ∩ (q ; m−1 ; v−1 ; u)

= u is a total surjection
(p ; l−1) ∩ (q ; m−1 ; v−1 ; u)
⊆ set theory
p ; l−1

Proof of the Second Part. We have to prove now the second part, namely:

(p ; p−1 ; e ; p ; l−1 ; u−1) ∩ (q ; q−1 ; e ; q ; m−1 ; v−1) ⊆ e ; n−1

This proof cannot be conducted in an algebraic form like we did for the first part in the previous section.
We have first to expand it as follows:

∀s, z′ · (∃s1, s1′ · p(s) = p(s1) ∧ s1 7→ s1′ ∈ e ∧ u(z′) 7→ p(s1′) ∈ l) ∧

(∃s2, s2′ · q(s) = q(s2) ∧ s2 7→ s2′ ∈ e ∧ v(z′) 7→ q(s2′) ∈ m)
⇒
(∃s′ · s 7→ s′ ∈ e ∧ u(z′) 7→ p(s′) ∈ l ∧ v(z′) 7→ q(s′) ∈ m)

We have now to be more precise about the sets S, T , U , X , Y , and Z. This can be done by means of the
following definitions:

S =̂ S1× S2× S3

T =̂ S1× S2

U =̂ S2× S3

X =̂ Z1× S2

Y =̂ S2× Z3

Z =̂ Z1× S2× Z3

19



As can be seen, the interface between the two sub-models N and P is played by the set S2. We can also
see that S2 is not refined by looking at the definitions of sets X and Y .

The projections p, q, u, v are instantiated accordingly:

p(s1 7→ s2 7→ s3) = s1 7→ s2

q(s1 7→ s2 7→ s3) = s2 7→ s3

u(z1 7→ s2 7→ z3) = z1 7→ s2

v(z1 7→ s2 7→ z3) = s2 7→ z3

As a consequence, the predicates p(s) = p(s1) and q(s) = q(s2) (seen in the expansion of the state-
ment to prove above) become p(s1 7→ s2 7→ s3) = p(s11 7→ s12 7→ s13) and q(s1 7→ s2 7→ s3) =
p(s21 7→ s22 7→ s23) respectively. Now these predicates can be simplified to s1 = s11 ∧ s2 = s12 and
s2 = s22 ∧ s3 = s23 respectively.

For instantiating the refinement relations l, m, and n, we introduce two relations λ and µ:

λ ∈ Z1× S2←↔ S1

µ ∈ S2× Z3←↔ S3

Next are now the instantiations of the refinement relations l, m and n:

(z1 7→ z2) 7→ (s1 7→ s2) ∈ l =̂ (z1 7→ z2) 7→ s1 ∈ λ ∧ z2 = s2

(z2 7→ z3) 7→ (s2 7→ s3) ∈ m =̂ (z2 7→ z3) 7→ s3 ∈ µ ∧ z2 = s2

(z1 7→ z2 7→ z3) 7→ (s1 7→ s2 7→ s3) ∈ n =̂ (z1 7→ z2) 7→ s1 ∈ λ ∧ (z2 7→ z3) 7→ s3 ∈ µ ∧ z2 = s2

Notice the various predicates z2 = s2. This takes account that the interface S2 is not refined.

It remains now for us to specialize the event e in two different ways.

First Specialization. First we consider a relation e2 leaving its component on set S3 unchanged, it
is however modifying its components on sets S1 and S2. For this, we introduce a relation ε typed as
follows:

ε ∈ S1× S2↔ S1× S2

(s1 7→ s2 7→ s3) 7→ (s1′ 7→ s2′ 7→ s3′) ∈ e2 =̂ (s1 7→ s2) 7→ (s1′ 7→ s2′) ∈ ε ∧ s3 = s3′

This event e2 is typically the event a_2_b used in the first example. Here is again what we had to prove
before the instantiations (we removed the external universal quantification):

(∃s1, s1′ · p(s) = p(s1) ∧ s1 7→ s1′ ∈ e ∧ u(z′) 7→ p(s1′) ∈ l) ∧

(∃s2, s2′ · q(s) = q(s2) ∧ s2 7→ s2′ ∈ e ∧ v(z′) 7→ q(s2′) ∈ m)
⇒
(∃s′ · s 7→ s′ ∈ e ∧ u(z′) 7→ p(s′) ∈ l ∧ v(z′) 7→ q(s′) ∈ m)

Let us instantiate these three predicates in turn. The instantiation of:

20



∃s1, s1′ · p(s) = p(s1) ∧ s1 7→ s1′ ∈ e ∧ u(z′) 7→ p(s1′) ∈ l

is

∃s11, s12, s13, s11′, s12′, s13′ ·
s1 = s11 ∧ s2 = s12 ∧
(s11 7→ s12) 7→ (s11′ 7→ s12′) ∈ ε ∧ s13 = s13′ ∧
(z1′ 7→ z2′) 7→ s11′ ∈ λ ∧ z2′ = s12′

That is:

∃s11′ · (s1 7→ s2) 7→ (s11′ 7→ z2′) ∈ ε ∧ (z1′ 7→ z2′) 7→ s11′ ∈ λ

The instantiation of:

∃s2, s2′ · q(s) = q(s2) ∧ s2 7→ s2′ ∈ e ∧ v(z′) 7→ q(s2′) ∈ m

is

∃s21, s22, s23, s21′, s22′, s23′ ·
s2 = s22 ∧ s3 = s23 ∧
(s21 7→ s22) 7→ (s21′ 7→ s22′) ∈ ε ∧ s23 = s23′ ∧
(z2′ 7→ z3′) 7→ s23′ ∈ µ ∧ z2′ = s22′

that is

∃s21, s21′ · (s21 7→ s2) 7→ (s21′ 7→ z2′) ∈ ε ∧ (z2′ 7→ z3′) 7→ s3 ∈ µ

Finally, the instantiation of:

∃s′ · s 7→ s′ ∈ e ∧ u(z′) 7→ p(s′) ∈ l ∧ v(z′) 7→ q(s′) ∈ m

is

∃s1′, s2′, s3′ ·
(s1 7→ s2) 7→ (s1′ 7→ s2′) ∈ ε ∧ s3 = s3′ ∧
(z1′ 7→ z2′) 7→ s1′ ∈ λ ∧ z2′ = s2
(z2′ 7→ z3′) 7→ s3′ ∈ µ ∧ z2′ = s2

That is:

∃s1′ · (s1 7→ s2) 7→ (s1′ 7→ z2′) ∈ ε ∧ (z1′ 7→ z2′) 7→ s1′ ∈ λ ∧ (z2′ 7→ z3′) 7→ s3 ∈ µ

So that we have to prove the following:

(∃s11′ · (s1 7→ s2) 7→ (s11′ 7→ z2′) ∈ ε ∧ (z1′ 7→ z2′) 7→ s11′ ∈ λ ∧
(∃s21, s21′ · (s21 7→ s2) 7→ (s21′ 7→ z2′) ∈ ε ∧ (z2′ 7→ z3′) 7→ s3 ∈ µ)
⇒
(∃s1′ · (s1 7→ s2) 7→ (s1′ 7→ z2′) ∈ ε ∧ (z1′ 7→ z2′) 7→ s1′ ∈ λ ∧ (z2′ 7→ z3′) 7→ s3 ∈ µ)

yielding:

(s1 7→ s2) 7→ (s11′ 7→ z2′) ∈ ε ∧ (z1′ 7→ z2′) 7→ s11′ ∈ λ) ∧
(s21 7→ s2) 7→ (s21′ 7→ z2′) ∈ ε ∧ (z2′ 7→ z3′) 7→ s3 ∈ µ)
⇒
(∃s1′ · (s1 7→ s2) 7→ (s1′ 7→ z2′) ∈ ε ∧ (z1′ 7→ z2′) 7→ s1′ ∈ λ ∧ (z2′ 7→ z3′) 7→ s3 ∈ µ)

The result is obtained by instantiating s1′ with s11′.

21



Second Specialization. Now we specialize the event e by considering a relation e1 leaving its component
on sets S2 and S3 unchanged: this event is just modifying its component on set S1:

(s1 7→ s2 7→ s3) 7→ (s1′ 7→ s2′ 7→ s3′) ∈ e1 =̂ s1 7→ s1′ ∈ ε ∧ s2 = s2′ ∧ s3 = s3′

This event e1 is typically the event in_a used in the first example. A treatment similar to the one we have
done for e2 leads to the following to prove:

(∃s11′ · s1 7→ s11′ ∈ ε ∧ (z1′ 7→ z2′) 7→ s11′ ∈ λ ∧ s2 = z2′) ∧
(∃s21, s21′ · s21 7→ s21′ ∈ ε ∧ (z2′ 7→ z3′) 7→ s3 ∈ µ ∧ s2 = z2′)
⇒
(∃s1′ · s1 7→ s1′ ∈ ε ∧ (z1′ 7→ z2′) 7→ s1′ ∈ λ ∧ (z2′ 7→ z3′) 7→ s3 ∈ µ ∧ s2 = z2′)

yielding:

s1 7→ s11′ ∈ ε ∧ (z1′ 7→ z2′) 7→ s11′ ∈ λ ∧ s2 = z2′ ∧
s21 7→ s21′ ∈ ε ∧ (z2′ 7→ z3′) 7→ s3 ∈ µ ∧ s2 = z2′
⇒
∃s1′ · s1 7→ s1′ ∈ ε ∧ (z1′ 7→ z2′) 7→ s1′ ∈ λ ∧ (z2′ 7→ z3′) 7→ s3 ∈ µ ∧ s2 = z2′

The result is obtained by instantiating s1′ with s11′.

22


