
Generic Instantiation Proposal

Renato Silva and Michael Butler

October 12, 2012

1 Motivation
It is believed that reusability in formal development should reduce the time and cost of
formal modelling within a production environment. Along with the ability to reuse for-
mal models, it is desirable to avoid unnecessary re-proof when reusing models. Event-
B supports generic developments through the context construct. However Event-B
lacks the ability to instantiate and reuse generic developments in other formal devel-
opments. We propose a methodology to instantiate generic models and extend the
instantiation to a chain of refinements.

Abrial and Hallerstede [2] and Métayer et al [3] propose the use of generic instan-
tiation for Event-B. It is suggested that the contexts of a development (pattern) can be
merged and reused through instantiation in other developments. That proposal lacks
a mechanism to apply the instantiation from the pattern to the instances.

We propose a Generic Instantiation tool for Event-B by instantiating machines.
The instances inherit properties from the generic development (pattern) and are pa-
rameterised by renaming/replacing those properties to specific instance element names.
Proof obligations are generated to ensure that assumptions used in the pattern are sat-
isfied in the instantiation. In that sense our approach avoids re-proof of pattern proof
obligations in the instantiation. The reusability of a development is expressed by in-
stantiating a development (pattern) according to a more specific problem.

2 Parameterisation of contexts
The instantiation is achieved with the parameterisation of contexts: contexts are only seen
by one machine (or one chain of machine refinements) and define specific properties
for that machine (sets, constants, axioms, theorems). These properties are unique for

1

that machine and any other machine would have different properties. This contrasts
with the other usage of contexts: a sharing context is seen by several machines and
there are some properties (sets, constants, axioms, theorems) shared by the machines.
Therefore in this case, the context is used to share properties.

3 Definition of Generic Instantiation of Machines
Here we define the generic instantiation of machines. Consider context CG0 and ma-
chine G0 (G stands for Generic) in Fig. 1 together as a pattern.

CONTEXT CG0

SETS sg0
CONSTANTS cg0
AXIOMS ag0

(a)

MACHINE G0

SEES CG0

VARIABLES vg0
EVENTS eg0

(b)

Figure 1: Pattern - Context CG0 and machine G0

Machine G0 could be part of a pattern chain made up by a chain of refinements as
seen in Fig. 2.

Figure 2: Pattern: chain of refinements

The goal is to reuse the pattern as an instance in an existing development (problem)
consisting of a chain of refinement of machines S0 to Sk (S stands for Specific problem)
as seen in Fig. 3.

This is achieved by creating an instance of the generic pattern named IG as seen
in Fig. 4. The instance sees context CIG (that could extend the specific problem con-
text CS) containing the replacement properties (sets sig and expressions Ei that may

2

(a)

CONTEXT CIG

EXTENDS CS

SETS sig
CONSTANTS cig
AXIOMS aig

(b)

Figure 3: Instantiation of pattern G0 . . . Gj via parameterisation context CIG creating
instance IG to fit specific problem S0 . . . Sk.

contain constants cig) for the elements in context CGi. The variables, events and pa-
rameters can also be renamed to fit new elements or existing elements in the specific
problem: variables vs, new events es and new parameters ps.

If the instance is to be used as a continuation of an existing problem, then prob-
lem and instance are linked via refinement: the instance corresponding to the pattern
G0 must be a valid refinement of the last refinement of the problem. The relation be-
tween the states of the two machines is given by the gluing invariant JS. The renaming
of variables is required to ensure that the gluing invariant is strong enough to prove
the refinement link (in particular between abstract variables vs and concrete variables
vig). In Fig. 4, machine G0 is abstractly instantiated via context CG0. Consequently
to ensure the aforementioned link, refinement proof obligations (PO) between Sk and
IG must be discharged as described in Sect. 3.2. For each instantiated event, if an
abstract parameter from the set ps disappears, then a witness needs to be explicitly
added: w1(ss, cs, sig, cig, ps, pig, vig); similarly, if an abstract variable from the set vs
has a non-deterministic assignment and disappears, then a witness also needs to be
provided: w2(ss, cs, sig, cig, vs′, pig, vig′).

3

INSTANCE IG
REFINES Sk /* problem machine; optional */
SEES CIG /* context containing the instance properties:ss, cs, sig, cig */
INSTANTIATES ABSTRACT G0 VIA CG0 /* mandatory */

REPLACE /* replace parameters in context CG0 */
SETS sgi := sigk …/* Carrier Sets: ss, sig */
CONSTANTS cgi := Ek …/* Constants replaced by expressions */

INVARIANTS JS /* Gluing invariant:ss, cs, sig, cig, vs, vig */
RENAME /*rename elements in machine G0 */

VARIABLES vgi := vigk … /* vs ⊆ vig; optional */
EVENTS eigk INSTANTIATES egi /* optional */

pgl := pigm … /* parameters: ps ⊆ pig; optional */
WITH wi … /* witnesses: w1(ss, cs, sig, cig, ps, pig, vig) or

w2(ss, cs, sig, cig, vs′, pig, vig′); optional */
:

INSTANTIATES CONCRETE Gj VIA CGj /* optional */
REPLACE /* replace parameters in contexts CG1 to CGj */

SETS sgj := sigk /* Carrier Sets */
CONSTANTS cgj := Ek /* Constants */

RENAME /*rename elements in machine Gj */
VARIABLES vgj := vigk /* optional */
EVENTS eigj INSTANTIATES egk /* optional */

pgl := pigm /* parameters: optional */
END

Figure 4: A generic instance IG

If the refinement PO are proved, then the rest of the pattern chain can be instan-
tiated and taken for free (after the required replacement of sets and constants and re-
naming of variables, events and parameters). This can be specified by selecting which
concrete instance is to be instantiated and which context is to be used (in Fig. 4, the
machine Gj is instantiated via context CGj). Several instances can be created from the
same pattern to fit specific a problem.

3.1 Static Checks
To ensure a valid instantiation of machines, several static checks must be taken into
account:

4

1. A static validation of replaced elements is required, e.g., a type must be replaced
by a type and a constant by another constant or an expression.

2. All sets and constants should be replaced, i.e., no uninstantiated parameters.

3. Renaming the constants, variables and events must be injective (not introducing
name clashes) in order to reuse all the existing proof obligations.

4. Replacing sets does not have to be injective. Different sets in the pattern can be
replaced by the same instance set.

5. Only given sets (defined by the user) can be replaced. Built-in types such as
integer numbers Z and boolean BOOL cannot be replaced.

6. At most one machine (Sk in Fig. 4) can be refined per instance.

7. Contexts may be seen by the instance (context CIG in Fig. 4). The sets and
constants used in the replacement section are extracted from these contexts or
are built-in types.

8. An abstract pattern machine must be defined to be instantiated. At least one
context is to be used during this instantiation (context CG0 in Fig. 4).

(a) The sets and constants to be replaced are extracted from these contexts.
They should be replaced by the elements available the seen contexts (i.e.
context CIG).

(b) The variables, events and parameters can be renamed as long as they do not
introduce name clashes. Moreover if the instance refines a machine, then
variable, event and parameter should be renamed accordingly to ensure a
valid refinement.

9. A concrete pattern machine can be defined to be instantiated. At least one con-
text is to be used during this instantiation (context CGj in Fig. 4).

(a) The sets and constants to be replaced are extracted from these contexts.
They should be replaced by the elements available the seen contexts (i.e.
context CIG).

(b) The variables, events and parameters can be renamed as long as they do not
introduce name clashes.

(c) The concrete pattern machine must be a refinement of the abstract pattern
machine (i.e. S0 ⊑ Sk).

5

3.2 Proof Obligations
In this section, we address the proof obligations necessary to validate the generic in-
stantiation of machines.

3.2.1 Pattern Assumptions and Instance Theorems

Axioms in contexts are assumptions about a system and are used to help discharge
proofs obligations. When instantiating, we need to show that assumptions in the pat-
tern are satisfied by the replacement sets and constants. The verification of this as-
sumption is achieved through the generation of proof obligations where the pattern
axioms are converted into instantiated theorems after the replacement is applied.

3.2.2 Instantiation and Proof Obligations

A specific machine Sk is characterised by:

MACHINE Sk

SEES CSk

VARIABLES vs
INVARIANTS Is(ss, cs, vs)
EVENTS es

An event esi of Sk is defined as:

esi =̂ ANY ps WHERE Gs(ss, cs, ps, vs)

THEN Ss(ss, cs, ps, vs, vs′) END.

A generic machine G0 is characterised by:

MACHINE G0

SEES CG0

VARIABLES vg0
INVARIANTS Ig0(sg0, cg0, vg0)
EVENTS eg

An event egi of G0 is defined as:

egi =̂ ANY pg WHERE Hg(sg0, cg0, pg, vg0)

THEN Tg(sg0, cg0, pg, vg0, vg
′
0) END.

Similarly, an instance IG0 is characterised by:

6

MACHINE IG0

SEES CIG

VARIABLES vig
INVARIANTS Iig(ss, cs, sig, cig, vig)
EVENTS eig

Moreover, we can add that vs ⊆ vig and ps ⊆ pig. An event eigi of IG0 is defined as:

eigi =̂ ANY pig WHERE Hig(ss, cs, sig, cig, pig, vig)

WITH ps : Wig1(ps, ss, cs, sig, cig, vig, pig)

vs′ : Wig2(vs
′, ss, cs, sig, cig, vig, pig, vig′)

THEN Tig(ss, cs, sig, cig, pig, vig, vig′) END.

For the generic instantiation, there are two different situations where proof obli-
gations are required:

• Ensure that an instance is a valid instantiation of a pattern. This requires that
pattern axioms are proved in the instance (and that the renaming of elements
does not introduce name clashes). This was addressed in the previous section.
For each generic axiom agi, the proof obligation that needs to be discharged is:

agi/AXM: AS ∧AIG
⊢ σagi

(1)

AS stands for the axioms of the specific machine given by as(sg, cg); AIG stands
for the axioms of the instance given by aig(sig, cig); σ represents all substitu-
tions of sets, constants and variables given by
[sgi := sigk, . . . , cgi := Ek, . . . , vgi := vigk, . . .]; σagi is the result of the substi-
tution applied to the generic axiom agi.

• When an instance refines an existing model, the abstract instance machine must
be a valid refinement of the existing model. This means that Sk ⊑ IG0 (where
IG0 is an valid instance of pattern G0). This is addressed below in Sect. 3.2.2.

Refinement PO (REF): For each event in IG0, the refinement PO ensure that
abstract actions of events in Sk are simulated by the concrete ones, that each abstract
guard is at least as weak as the concrete one and that when an abstract variable is data

7

refined by a concrete one and disappears, gluing invariants exist linking the abstract
and concrete variables.

For event eigi, the refinement PO between Sk and IG0 is given by:

eigi/REF:

AS ∧ σAG
IS
JS
σHG
σTG
⊢ ∃vs′ ·GS ∧ SS ∧ JS

(2)

AS stands for the axioms of the specific machine Sk given by as(ss, cs); σAG is the
substitution applied to the generic axioms AG ; IS stands for the invariant of Sk given
by Is(ss, cs, vs); JS is the gluing invariant given by Js(ss, cs, sig, cig, vig); HG are the
guards of the event egi and TG are the assignments for the same event: therefore σHG
represents the substitution applied over the guards HG resulting in guard of event eigi
Hig (similar for σTG); GS and SS are the guards and actions for the event esi in Sk.

The use of witnesses allows the separation of the previous proof rule in three parts:
proof rules Gluing Invariant Preservation (3), Guard Strengthening (4) and Simulation
(5). In practice, when discharging POs, it is simpler to deal with one part of the refine-
ment PO at a time instead of dealing with all at once. We do not address the technical
parts about the partition of the refinement POs but more details can be found in [1].
When non-deterministic witnesses are used, a proof obligation is generated to ensure
that the witness is feasible. If the parameters and variables between refined events do
not match, we may need to provide a mechanism to add this information.

Gluing Invariant Preservation (INV): In a refinement, concrete invariants must
be preserved for each concrete event. The hypotheses include axioms, abstract invari-
ants and theorems plus concrete invariants and theorems, concrete guards, witnesses
predicates for variables and concrete before-after predicates. The goal is each concrete
invariant from the set of invariants in the refinement. For event eigi and each of the
invariants jS in JS, the respective proof obligation rule is given by (3).

eigi/inv/INV :

AS ∧ σAG
IS
JS
σHG
WIG2

σTG
⊢ jS

′

(3)

8

WIG2 stands for the witness predicates corresponding to each disappearing ab-
stract variable vs′ with non-deterministic assignments and given by
Wig2(vs

′, ss, cs, sig, cig, vig, pig, vig′); jS ′ is each invariant from the set JS where the
variables are replaced by their before-after state: jS ′(ss, cs, sig, cig, vig′).

Guard Strengthening (GRD): It ensures that each abstract guard is at least as
weak as the concrete one in the refining event. As a consequence, when a concrete
event is enabled, the corresponding abstract one is also enabled. The hypotheses in-
clude axioms, abstract invariants and theorems, concrete invariants and theorems,
concrete guards and witness predicates for parameters. The goal is each individual
abstract guard from the set of abstract guards. For event eigi and each of the abstract
guards gS(ps, ss, cs, vs), this proof obligation is given by (4).

eigi/grd/GRD:

AS ∧ σAG
IS
JS
σHG
WIG1

⊢ gS

(4)

WIG1 stands for each disappearing abstract parameter in an abstract event and it
is given by Wig1(ps, ss, cs, sig, cig, vig, pig).

Simulation (SIM): It ensures that each action in a concrete event simulates the
corresponding abstract action. When a concrete action is executed, the corresponding
abstract one should not be contradicted. The hypotheses include axioms, abstract
invariants and theorems, concrete invariants and theorems, concrete guards, witness
predicates for refined parameters, witness predicate for refined abstract variables and
the concrete before-after predicate for each concrete event. The goal is each individual
abstract before-after predicate from the set of abstract assignments. For event eigi and
one of the respective actions act, this proof obligation is given by (5).

9

eigi/act/SIM:

AS ∧ σAG
IS
JS
σHG
WIG1

WIG2

σTG
⊢ SS

(5)

References
[1] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad

Mehta, and Laurent Voisin. Rodin: An Open Toolset for Modelling and Reasoning
in Event-B. International Journal on Software Tools for Technology Transfer (STTT),
April 2010.

[2] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, Decomposition, and
Instantiation of Discrete Models: Application to Event-B. Fundam. Inf., 77(1-
2):1–28, 2007.

[3] Christophe Métayer, Jean-Raymond Abrial, and Laurent Voisin. Event-B Lan-
guage. Technical report, Deliverable 3.2, EU Project IST-511599 - RODIN, May
2005.

[4] Matthias Schmalz. Term Rewriting in Logics of Partial Functions. Proceedings of
ICFEM 2011, 2011.

10

	Motivation
	Parameterisation of contexts
	Definition of Generic Instantiation of Machines
	Static Checks
	Proof Obligations
	Pattern Assumptions and Instance Theorems
	Instantiation and Proof Obligations

