iUML-B
State Machine Diagrams

Dr Colin Snook

Motivation

Provide a more approachable interface for newcomers to Event-B
Provide diagrams to help visualise models
Provide extra modelling features to Event-B

Sequencing of Events
Lifting of Behaviour to a set of instances (0-0)

N.b. not trying to formalise UML

What is iUML-B?

A Graphical front-end for Event-B

>

Plug-in for Rodin

Not UML ...

>

>

Has its own meta-model (abstract syntax)
Semantics inherited from translation to Event-B

... but it has some similarities with UML

>

>

Class Diagrams Coming soon!
State Machine Diagrams

Translator generates Event-B automatically

>

>

Into the same machine (generated is read only)
Can also write standard Event-B in the same machine + events

What are the benefits?

Visualisation
> Helps understanding
> communication

Faster modelling

> One drawing node = several lines of B
> Extra information inferred from position (containment) of elements
> Experiment with different abstractions

finding useful abstractions is hard

Provides structuring constructs
> Hierarchical state-machines

Event-B has no event sequencing mechanism
> Class Lifted state-machines
Event-B has no lifting mechanism

State Machines

State machines provide a way to model behaviour (transitions)
Constrained by some data (source state)
The transition’s behaviour is to change the data (to target state)

S1 S2
el
— ~—

Transition el can only fire when the state is S1
when el fires it changes the state to S2

How could we represent this in Event-B?

State Machines to Events

el

EVENTS
el = WHEN <in S1> THEN <becomes S2> END

where, <in S1> and <becomes S2> depend on the data that represents state

State machine as a type

We could treat the whole statemachine as an enumerated type. The current state is
given by a variable of that type. (Called Enumeration translation in iUML-B).

VARIABLES SETS
sm € sm STATES sm STATES = {S1,S52}
S1 el S2
EVENTS

el = WHEN sm = S1 THEN sm := S2 END

State machine collection of variables

Or we could treat each state as a separate variable. (Called Variables translation

in iUML-B)
VARIABLES

S1 € BOOL

S2 € BOOL where, one of S1, S2 is TRUE at any moment
ST) 52)

el
| — | —
EVENTS

el = WHEN S1 = TRUE
THEN S1 := FALSE
S2 := TRUE
END

Initial transition

‘ INITIALISATION S1 el S2
Enumeration translation Variables translation
INITIALISATION INITIALISATION

sm := S1 or S1 := TRUE
S2 := FALSE

State Invariant

Something that must be true whenever the system is in that state.

INITIALISATION s1 el 52)
o >
. vl = TRUE
Enumeration translation Variables translation
INVARIANTS INVARIANTS
(sm=52)=> (V1=TRUE) or (52=TRUE)=> (V1=TRUE)

Transition Elaboration

Transitions ‘elaborate’ (i.e. contribute to) event(s) in the Machine.
So you can give them parameters, guards and actions etc. in the Machine

ela, elb

52 R

S1
. INITIALISATION
| —
ela =
STATUS
ordinary
ANY
p
WHERE
isin S1 S1 = TRUE
grdl p>>5
THEN
leave S1 S1 := FALSE
enter S2 S2 == TRUE
END

<~ vl =TRUE

elb =

STATUS
ordinary

ANY
p

WHERE
isin S1
grdl

THEN
enter S2
leave S1

END

S1 = TRUE
p =5

S2
S1 :

TRUE
FALSE

Nested Statemachines

Statemachines can be nested inside states
a) so that we can put an invariant on the superstate
b) so that a transition can leave from any substate

c) adding detail in a refinement

‘s1
1A “c1n g ™
S1A S1B s2
. INITIALISATION e2 ela, elb
| <~ v1 = TRUE |

REFINEMENT of State-machines:
We often add nested statemachines in refinements.

Can also split events into cases (e.g. el to ela,elb) and add invariants to
states

BUT must NOT add states to an existing statemachine as this would break the
type/partition invariants.

Parallel Nested Statemachines

Several Statemachines can be nested inside states

rSI Y
1A “c1n r a
1A S1B s2
. INITIALISATION| |3 o2 ! ela, 41b
<~ v1 = TRUE |

INITIALISATION e3 ‘
— — \

elb

Transition Properties

Transitions can own event properties:
parameters, witnesses, guards and actions

Transition properties are copied into each elaborated event when the
statemachine is generated.

Why? :

a. You can do all the modelling in the diagram, no need to switch to the Event-B
editor

b. If several events are elaborated you only write the guards/actions etc. once

Warning: Make sure transitions are possible!!

TR
e t_never
S3
| —
S2 g
t_never
| —
o t_never: not extended ordinary >
WHERE

o isin S2: S2
o isin S1: Sl
THEN

TRUE not theorem >
TRUE not theorem >

o leave S2: S2 = FALSE °
o leave S1: S1 = FALSE °
o enter S3: S3 = TRUE >

END

Junctions

For transitions that are enabled in several states

S1

o tj: not extended ordinary >

i . — WHERE
j

o o 1sin S1 or isin S2: (S1 = TRUE v S2 = TRUE)
I T — THEN
o leave S2: S2 = FALSE >
R o leave S1: S1 = FALSE -
o enter_S3: S3 = TRUE -
END

Rules:
1. Only the final segment elaborates an event
2. Other segments do not own actions (but can have guards)

Junctions (cont.)

S1)
(g1) l
. . tj s3
Can be combined —>®
| N
S2A)
[g2a]
[g2]
'S2B)
(g2b]
o tj: not extended ordinary >
WHERE
o 1sin S1 or_isin S2A or_isin_S2B: ((S1 = TRUE A gl) v (((S2A = TRUE A g2a) v (S2B = TRUE A g2b)) A g2))
THEN
o leave S2B: S2B = FALSE >
o leave S2A: S2A = FALSE >

o leave S1: S1 = FALSE -

o enter_S3: S3 = TRUE >
END

o tk: not extended ordinary >
WHERE

o 1sin S1 or_isin S2A or_isin_ S2B: ((S1 = TRUE A gl) v (((S2A = TRUE A g2a) v (S2B = TRUE A g2b)) A g2))

From any substate

'S0
o t_any nested: not extended ordinary >
s01 WHERE
503) o 1sin SO: S0 = TRUE not theorem >
THEN
502 o leave S02: S02 = FALSE >
o leave SO@1: SO1 = FALSE -
t_any_nested o ente r_ S03: SO3 = TRUE -
END

From ANY at top level

INITIALISATION
o
—
S3
{C} t_any
. —
S2

o t_any: not extended ordinary >
— THEN

o leave S2: S2 = FALSE -
o leave S1: S1 = FALSE >
o enter S3: S3 = TRUE -

END

Forks and Joins

rw)
SMAL) o SMA2
S SF)
INITIALISATION |-~ tl R S t3
o e e
\ A I S ————
(SMBT) 5, SMB2
S

o t3: not extended ordinary >

o tl: not extended ordinary > WHERE
WHERE .
isin SI: SI = TRUE not th o 1sin SMA2: SMA2 = TRUE not theorem >
?HEN“”‘— ' = not theorem o isin SMB2: SMB2 = TRUE not theorem >

THEN

o leave SMA2: SMA2 = FALSE >
o leave SM: SM = FALSE -

o leave SMB2: SMB2 = FALSE >
o enter SF: SF = TRUE -

o leave SI: SI = FALSE >
o enter SMB1: SMB1 = TRUE >
o enter SM: SM = TRUE >

o enter_ SMAl: SMAl = TRUE >

Example — Factory Machine

i)
e
(¢0)

‘o
©
>
C

pA

Example — Factory Machine

guard: shield = closed
"ON)
AEE) start CACTINE a
INITIALISATION OFF swON “INACTIVE ACTIVE run

—J< - = stop | < shield=CLOSED

SWON "OPEN close “CLOSED

_A_J B open —

stop

Example — Factory Machine

guard: shield = closed
"ON)
v
e start ETTOE \
INITIALISATION OFF swON INACTIVE ACTIVE run
—J< - = stop |~ shield=CLOSED
swON OPEN S CLOSED
ﬁ_J\ open —
stop
- J
guard: machine onState # ACTIVE

omitted for model checking demo on next page

State-machine Animation showing invariant violation

e O O ProB - platform:/resource/Facto

achine/m0.machine.smd#_Rr7yQK9qEeOjcNJuF2Pfog - Rodin Platform - /Volumes/Data/RodinWorkspaces2.8/COMP3011

e H@ 2|00 @ @)@] %] VBAR] e

J Lucida Grande sl 9 : v v

ﬁ B Event-B

7 vy N N
O Eve 23_ = B/ [&4 *m0.machine.smd#0 83\7 =g mﬁ Ltl Count| [Simulato | =808 E] 1 =8
Checks v %v 1]~ 22 i & 4 T B
~», Q mo
P Py oy Name
| v md " || open
Event | Parameter(s)) INITIALISATION ~_(OFF] swON p—— Lo\ — _
@swON n machine run
@ swOFF <hield=CLOSED machine onState start
Sstart N sworp | L Ear Lo shistd=CLOSD) . shield close
> stop wFormulas swON
P run v+ invariants INITIALISATION
P close SWON (OPER close (CLOSED) pmachine onState = machine onState NULL. (uninitialised state)
@open pshield # shield NULL < (machine = ON)
open v+ machine_onState = ACTIVE =» shield = C
pmachine_onState = ACTIVE
sStop p + shield = CLOSED
3 pguards
(E.‘. RI »1 = E\ 9
~
$ @
" N &
TE
I Je
v =% FactoryMachii
» @ mO_implici
v@mo
» © Variable:
v [5 Statemat
B State |
> 8 State | AVEREREVIGREEAMI o event errors detected|
A levimwinmt
| o®

Lifted (O-0O) State-machines

Statemachines can be ‘lifted’ to a set of instances in an O-O way
Effectively, each instance has a “copy” of the statemachine
Need to be able to define ‘self’ name in case of transition synchronisation

Al AR oy @ 70 =)
4
. INITIALISATION |51 el 52] end
| - v(self) = TRUE
2 Rodin Problems | = Properties 53 ¥ Tasks | el - ¥ =0)
k9 Statemachine
| Name:
Overview ame: ‘ sm I
Model Refines:] [v]
Rulers & Grid | Instances: INSTANCES [v]
Appeamance SelfName: self |
Translation: |Variables [v]
Comment:

Lifted (O-O) State-machines - Enumeration Translation

VARIABLES/INVARIANTS SETS
sm € INSTANCES — sm STATES sm STATES = {S1,S52}

EVENTS

INITIALISATION =

sm := INSTANCES x {S1}
el(self) =

WHERE sm(self) = S1

THEN sm(self) := S2

END

Lifted (O-O) State-machines - Variables Translation

VARIABLES/INVARIANTS
S1 ¢ (INSTANCES)

S2 ¢ (INSTANCES)

partition((S1 v S2), S1, S2)

EVENTS
INITIALISATION =
S1 := TINSTANCES
S2 = @
el(self) =

WHERE self € S1
THEN S1 := S1 \ {self}
S2 := S2 v {self}

END

Lifted (O-0O) State-machines — Invariants
(Variables Translation)

Something that must be true for the instance whenever an instance of the class is in

that state.
rsz A
> —
=~ v(self) = TRUE
Translation:

Vself: (sm(self) = S2) = (v(self) = TRUE))

. IMPORTANT: An extra update site has to be added to make some dependencies accessible. Use the
I n Sta | | a tl O n ADD button below to add the following update site before installing iUML-B :-

http://download.eclipse.org/modeling/gmp/gmf-tooling/updates/releases/

8 0.6 ‘ " Install

Available Software

Check the items that you wish to install.

Work with: 6IRodin - http://rodin-b-sharp.sourceforge.net/updates |v] . Add.. |

Find more software by working with the "Available Software Sites" preferences.

type filter text)

Name Version
(| » 000 Composition and Decomposition

b 000 Editors

> 000 Frameworks

v 000 Modelling Extensions

J |

O

O

O

O = Atomicity Decomposition 1.0.0

O J*Event-B Qualitative Probability 0.2.1.201111161
O i Event-B Theory Feature 132

O 4+ iUMLB State-Machines 1.5.0.r15631
O Y:Records 1.0.1

B 43 UML-B Modelling Environment 2.2.1

(| w000 Prover Extensions

() w000 Utilities

[| willlValidation

O %+ iUMLB State-Machines Animation 1.2.0

O < UML-B Statemachine Animation 1.2.0

Summary

Statemachines for modelling behaviour
> Nested statemachines in states
> Invariants in states
> Transitions elaborate events ...
> ... to control the sequence of event firing (a control flow)

Choice of 2 translations

Can be ‘lifted’ to instances

Can be animated and model checked
> (front-end for Pro-B)

