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Outline 1

- The problem

- Its solution

- Questions???

- An example (time permitting)
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In the Event-B Book (Chapter 15) 2

- Conditionals

- Loops

- Nothing for procedure calls

- Almost nothing for sequencing
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Different Usage of Operations and Events 3

- An operation can be called

- An event can be observed
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Pre-conditioned Operation Definition 4

- Some (possibly missing) parameters

- A pre-condition: it must be true before the operation is called

- A post-condition
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Guarded Event Definition 5

- Some (possibly missing) parameters

- A guard: it must be true for the event to be observable

- A post-condition
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Guard and Pre-condition Refinements are Different 6

- Pre-conditions are weakened

- Guards are strengthened
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Guard and Pre-condition Behaviours are Different 7

- An operation called with a false pre-condition results in a crash

- An event with a false guard is not observable
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Operations and Events are both Useful 8

- Operations needed when specifying programs

- Events needed when modelling systems
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A Challenge 9

- It seems impossible to define operations by means of events

- Because of the difference between pre-conditions and guards

- The intent of this presentation is to show how it is possible
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Outline 10

- The problem

- Its solution

- Questions???

- An example (time permitting)
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Defining an Operation with an Event 11

- The operations P is first defined as an event (and so refined):

P =̂
any
fp

when
G(v, fp)

then
A(v, v′, fp)

end

- It can be proved to maintain some invariant I(v):

I(v) ∧ G(v, fp) ∧ A(v, v′, fp) ⇒ I(v′)
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Transforming the Operation into an Event (1) 12

We define the following set:

PR = {call,
return,
undefined}

We define a variable prog (it is initialized to undefined):

prog ∈ PR
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Transforming the Operation into an Event (2) 13

We define a call to P as follows:

Call to P =̂
when
...
prog = undefined

then
...
ap := ...
prog := call
...

end

- Variable ap contains the actual parameters of the operation
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Transforming the Operation into an Event (3) 14

- We then refine P as follows:

(abstract-)P =̂
any

fp
when

G(v, fp)
then

A(v, v′, fp)
end

−→

(concrete-)P =̂
refines

P
when

prog = call
with

fp : fp = ap
then

A(v, v′, ap)
prog := return

end

- For proving the refinement:

prog = call ⇒ G(v, ap)
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Transforming the Operation into an Event (4) 15

- Finally, we have a return from P:

Return from P =̂
when
prog = return

then
...
prog := undefined

end
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Generalisation: Building a Module 16

- A module is made of a state surrounded by some operations

- Users of the modules can only use the operation
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Outline 17

- The problem

- Its solution

- Questions???

- An example (time permitting)
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Some Questions 18

- Have you got some examples where this would be needed?

- How about defining a plug-in for doing this?

- Would it be useful to generate corresponding code?

- Does this connect somehow Classical-B and Event-B?
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Outline 19

- The problem

- Its solution

- Questions???

- An example (time permitting)
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Example: Sorting (1) 20

- The file to be sorted:

axm1 : n ∈ N1

axm2 : file 0 ∈ 1 .. n � N
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Example: Sorting (2) Defining the State of a Module 21

- In an initial machine we define the set file being sorted.

- We also define a variable k supposed to be in the domain of file.

inv0 1 : file ∈ 1 .. n � N

inv0 2 : ran(file) = ran(file 0)

inv0 3 : k ∈ dom(file)

These variables are initialised as follows:

INIT =̂
begin
file := file 0
k := 1

end
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Example: Sorting (3) 22

- Now, we surround this state with the following events, thus forming a module

search min =̂
any i where
i ∈ 1 .. n

then
k := file−1(min(file[i .. n]))

end

swap =̂
any i j where
i ∈ 1 .. n
j ∈ 1 .. n

then
file := file �− {i 7→ file(j)} �− {j 7→ file(i)}

end

It is easy to prove that these events maintain the three invariants inv0 1, inv0 2,
and inv0 3.
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Example: Sorting (4) 23

We finally define the following sort event (it is defined so far in a non-deterministic way):

sort =̂
begin

file :| file′ ∈ 1 .. n� N ∧ ran(file′) = ran(file 0) ∧
(∀p, q · p ∈ 1 .. n ∧ q ∈ 1 .. n ∧ p < q ⇒ file′(p) < file′(q))

end
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Example: Sorting (5) 24

- In the refinement, we first define the following enumerated set:

PR = {call search min,
return search min,
call swap,
return swap,
undefined}

- We define the following variables l and prog:

inv1 1 : l ∈ 0 .. n

inv1 2 : prog ∈ PR
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Example: Sorting (6) 25

- Besides the initialisation, we then define some new events

- The new events do no use the variables file and k, they only call the operations

INIT =̂
begin

file := file 0
k := 1
l := 0
prog := undefined

end

sort 1 =̂
when

l < n
prog = undefined

then
prog := call search min

end

sort 2 =̂
when

prog = return search min
then

prog := call swap
end

sort 3 =̂
when

prog = return swap
then

l := l + 1
prog = undefined

end

sort 4 =̂
refines sort when l = n then skip end
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Example: Sorting (7) Refining the Operations 26

search min =̂
refines

search min
when

prog = call search min
with

i = l + 1
then

k := file−1(min(file[l + 1 .. n]))
prog := return search min

end

swap =̂
refines

swap
when

prog = call swap
with

i = l + 1
j = k

then
file := file�− {l + 1 7→ file(k)}�− {k 7→ file(l + 1)}
prog := return swap

end
26



Example: Sorting (8) 27

We have then to prove the pre-conditions:

inv1 3: prog = call search min ⇒ l + 1 ∈ 1 .. n

inv1 4: prog = call swap ⇒ l + 1 ∈ 1 .. n

inv1 5: prog = call swap ⇒ k ∈ 1 .. n

27



Example: Sorting (9) 28

- Finally, we want to prove thm1 1 saying that file is indeed sorted when l = n holds:

thm1 1: l = n ⇒ (∀ p, q · p ∈ 1 .. n ∧ q ∈ 1 .. n ∧ p < q ⇒ file(p) < file(q))

- This theorem is needed to prove that the event sort 4 refines the abstract event sort.

- More invariants are needed for this

- This development required 96 proof obligations

- All proved automatically, except 3 of them proved interactively
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Example: Sorting (10) Final Program 29

- Events INIT, and sort 1 to sort 4, lead to the following program:

sort =̂
l := 0;
while l < n do
swap(l + 1, search min(l + 1));
l := l + 1

end
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