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Outline: Some Mathematical Studies 1

- Some important mathematical concepts (in Computer Science):

1. Well-foundedness

2. Fixpoint

3. Transitive closure

4. Computation

5. Real Numbers

6. Some theorems (time permiting)
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Purpose of this Presentation 2

- We want to do some mathematical studies of these fields

- Showing some generic proofs done with the “Theory” plug-in
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1. Well-foundedness
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Motivation for Well-founded Sets and Relations 3

- This mathematical structure formalizes the notion of reachability

- A discrete transition process, which:

- either terminates

- or eventually reaches certain states

- is formalized by means of well-founded traces
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A Well-founded Relation 4
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A Well-founded Relation 5
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A Well-founded Relation 6

8



A Well-founded Relation 7
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A Well-founded Relation 8

- From any point in the graph

- You always reach a red point after a FINITE travel
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Relations which are not Well-founded: no Red Points 9

- A cycle

- An infinite chain
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Non-empty Set p Containing a Cycle or an Infinite Chain 10

x

p

For all x in p

∀x · x ∈ p ⇒
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Set p Containing a Cycle or an Infinite Chain 11

x

y

p

For all x in p there exists a y in p

∀x · x ∈ p ⇒ (∃y · y ∈ p ∧
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Set p Containing a Cycle or an Infinite Chain 12

x

r
y

p

For all x in p there exists a y in p related to x by relation r

∀x · x ∈ p ⇒ (∃y · y ∈ p ∧ x 7→ y ∈ r)

14



Set p Containing a Cycle or an Infinite Chain 13

x

r
y

p

For all x in p there exists a y in p related to x by relation r

∀x · x ∈ p ⇒ (∃y · y ∈ p ∧ x 7→ y ∈ r)

p ⊆ r−1[p]
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Definition of a Well-founded Relation 14

- A well-founded relation does not contain such a set p . . .

- . . . unless it is the empty set

wf (r) =̂ ∀p · p ⊆ r−1[p] ⇒ p = ∅
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Another Definition 15

- Every non-empty subset p has at least one r-maximal element x

p

x

- That is, x is NOT related to another point in p

17



Another Definition 16

- For every non-empty subset p then

-

-

∀p · p 6= ∅
⇒
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Another Definition 17

- For every non-empty subset p then

- there exists a point x of p such that

-

∀p · p 6= ∅
⇒
∃x · x ∈ p ∧
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Another Definition 18

- For every non-empty subset p then

- there exists a point x of p such that

- forall z in p,

∀p · p 6= ∅
⇒
∃x · x ∈ p ∧ (∀z · z ∈ p ⇒
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Another Definition 19

- For every non-empty subset p then

- there exists a point x of p such that

- forall z in p, x is NOT related to z

∀p · p 6= ∅
⇒
∃x · x ∈ p ∧ (∀z · z ∈ p ⇒ x 7→ z /∈ r)
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Another Definition 20

- For every non-empty subset p then

- there exists a point x of p such that

- forall z in p, x is NOT related to z

wf (r) ⇔ ∀p · p 6= ∅ ⇒ ∃x · x ∈ p ∧ (∀z · z ∈ p ⇒ x 7→ z /∈ r)

- Can we explain this?
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Manual Proof 21

p 6= ∅ ⇒ ∃x · x ∈ p ∧ (∀z · z ∈ p ⇒ x 7→ z /∈ r)

⇔ contraposition

¬ (∃x · x ∈ p ∧ (∀z · z ∈ p ⇒ x 7→ z /∈ r)) ⇒ p = ∅

⇔ de Morgan

(∀x · x ∈ p ⇒ ¬ (∀z · z ∈ p ⇒ x 7→ z /∈ r)) ⇒ p = ∅

⇔ de Morgan

(∀x · x ∈ p ⇒ (∃z · z ∈ p ∧ x 7→ z ∈ r)) ⇒ p = ∅

⇔ set theory

p ⊆ r−1[p] ⇒ p = ∅

23



Induction Principle: for Proving Properties of w.f. Sets 22
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Induction Principle: for Proving Properties of w.f. Sets 23

If for any x

then

∀x ·
⇒

25



Induction Principle: for Proving Properties of w.f. Sets 24

If for any x

if under the assumption that Q(y) holds for all y s.t. x 7→ y ∈ r then

then

∀x · (∀y · x 7→ y ∈ r ⇒ Q(y)) ⇒
⇒
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Induction Principle: for Proving Properties of w.f. Sets 25

If for any x

if under the assumption that Q(y) holds for all y s.t. x 7→ y ∈ r then

you can prove a property Q(x)

then

∀x · (∀y · x 7→ y ∈ r ⇒ Q(y)) ⇒ Q(x)
⇒
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Induction Principle: for Proving Properties of w.f. Sets 26

If for any x

if under the assumption that Q(y) holds for all y s.t. x 7→ y ∈ r then

you can prove a property Q(x)

then

Q(z) holds for all z in S

∀x · (∀y · x 7→ y ∈ r ⇒ Q(y)) ⇒ Q(x)
⇒
∀z · z ∈ S ⇒ Q(z)
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Induction Principle: for Proving Properties of w.f. Sets 27

∀x · (∀y · x 7→ y ∈ r ⇒ Q(y)) ⇒ Q(x)
⇒
∀z · z ∈ S ⇒ Q(z)
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Induction Principle: for Proving Properties of w.f. Sets 28

∀x · (∀y · x 7→ y ∈ r ⇒ Q(y)) ⇒ Q(x)
⇒
∀z · z ∈ S ⇒ Q(z)

- We replace the predicate Q( ) by the set q
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Induction Principle: for Proving Properties of w.f. Sets 29

∀x · (∀y · x 7→ y ∈ r ⇒ Q(y)) ⇒ Q(x)
⇒
∀z · z ∈ S ⇒ Q(z)

- We replace the predicate Q( ) by the set q

∀x · (∀y · x 7→ y ∈ r ⇒ y ∈ q) ⇒ x ∈ q
⇒
∀z · z ∈ S ⇒ z ∈ q
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Induction Principle: for Proving Properties of w.f. Sets 30

∀x · (∀y · x 7→ y ∈ r ⇒ Q(y)) ⇒ Q(x)
⇒
∀z · z ∈ S ⇒ Q(z)

- And now we quantify over q (previous is 2nd order over Q)

∀q · ∀x · (∀y · x 7→ y ∈ r ⇒ y ∈ q) ⇒ x ∈ q
⇒
∀z · z ∈ S ⇒ z ∈ q
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Induction Principle: for Proving Properties of w.f. Sets 31

∀q · ∀x · (∀y · x 7→ y ∈ r ⇒ y ∈ q) ⇒ x ∈ q
⇒
∀z · z ∈ S ⇒ z ∈ q

- The final touch:

∀r · wf (r) ⇒ (∀q · (∀x · r[{x}] ⊆ q ⇒ x ∈ q) ⇒ S ⊆ q)
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How to Prove that a Relation is Well-founded? 1st approach 32

- If p is included in a well-founded relation q, then so is p

∀p, q · q ∈ S↔ S ∧ wf (q) ∧ p ⊆ q ⇒ wf (p)

- Intuition: If q has no cycle or infinite chain, then so is p
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How to Prove that a Relation is Well-founded? 2nd Approach 33

- We connect S and T by means of a relation v

v ∈ S↔ T

Some conditions ?

- Here is what we have to prove

wf (q)
Some conditions
⇒
wf (p)
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How to Prove that a Relation is Well-founded? 2nd Approach 34

- Here is what one has to prove:

p ∈ S↔ S
q ∈ T ↔ T
wf (q)
v ∈ S↔ T
dom(v) = S
v−1 ; p ⊆ q ; v−1

⇒
wf (p)

t t´

s s´

q

v v

p
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A Useful Lemma 35

- The relations v is a total function: v ∈ S→ T

q

v v

p

v(x) v(y)

x y

- Here is what we have to prove:

p ∈ S↔ S
q ∈ T ↔ T
v ∈ S→ T
∀x, y · x 7→ y ∈ p ⇒ v(x) 7→ v(y) ∈ q
⇒
v−1 ; p ⊆ q ; v−1
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A Given Well-founded Relation 36

- Here is what we would like to prove:

wf ({x 7→ y | x ∈ N ∧ y ∈ N ∧ y < x})
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Putting the Previous Results Together 37

r ∈ S↔ S
v ∈ S→ N
∀x, y · x 7→ y ∈ r ⇒ v(y) < v(x)
⇒
wf (r)

- This introduces the concept of variant

- DEMO
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2. Fixpoint
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Motivation for Fixpoint 38

- This mathematical concept is used to formalize recursion
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Definition 39

- We are given a set function f

f ∈ P(S)→ P(S)

- We would like to construct a subset, fix(f), of S such that:

fix(f) = f(fix(f))

- Proposal

fix(f) =̂ inter({s | f(s) ⊆ s})
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Two Useful Lemmas 40

- fix(f) is a lower bound of the set {s | f(s) ⊆ s}

∀s · f(s) ⊆ s ⇒ fix(f) ⊆ s

- fix(f) is the greatest lower bound of the set {s | f(s) ⊆ s}

∀v · (∀s · f(s) ⊆ s ⇒ v ⊆ s) ⇒ v ⊆ fix(f)

43



The Main Results (Knaster-Tarski) 41

- Additional needed constraint: f is monotone

∀a, b · a ⊆ b ⇒ f(a) ⊆ f(b)
⇒

fix(f) = f(fix(f))

- fix(f) is the least fixpoint

∀t · t = f(t) ⇒ fix(f) ⊆ t
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Complement and Conjugate 42

- Given a set k of type P(S), the complement, k, of k is as follows:

k =̂ S \ k

- Given a function f :

f ∈ P(s)→ P(s)

- Then, the conjugate, f̃ , of f is defined as follows:

f̃ =̂ λk · k ⊆ s | h(k)

- Properties:

k = k

˜̃
f = f
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Greatest Fixpoint 43

- Given a function f :

f ∈ P(S)→ P(S)

- The set FIX(f) is defined as follows:

FIX(f) =̂ fix(f̃)

- Therefore, we have

fix(f) = FIX(f̃)
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Greatest Fixpoint Properties 44

- The following can be proved:

FIX(f) = union({s | s ⊆ f(s)})

∀a, b · a ⊆ b ⇒ f(a) ⊆ f(b)
⇒

FIX(f) = f(FIX(f))

∀t · t = f(t) ⇒ t ⊆ FIX(f)

- DEMO
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Connecting Recursion to Well-foundedness 45

- A very important theorem by Tarski (1955) and Montague (1955)

- Let r be a well-founded relation on S: r ∈ S↔ S

Let g be a a function such that: g ∈ (S 7→ T )→ T

There is a unique total function f : f ∈ S→ T

such that we have:

∀x · x ∈ S ⇒ f(x) = g(r[{x}] � f)
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Connecting Recursion to Well-foundedness 46

∀x · x ∈ S ⇒ f(x) = g(r[{x}] � f)

x

r[{x}]

r

- The value of the function f at x depends on its values on r[{x}]

- More on this is skipped
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3. Transitive Closure

50



Motivation for Transitive Closure 47

- Transition system achievement

51



Naive Approach at the Irreflexive Transitive Closure r+ 48

- We are given a relation r built on a set S:

r ∈ S↔ S

- The irreflexive transitive closure r+ of r is "defined" as follows:

r+ =̂ r ∪ r2 ∪ . . . ∪ rn ∪ . . .
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Naive Approach at the Irreflexive Transitive Closure r+ 49

r+ =̂ r ∪ r2 ∪ . . . ∪ rn ∪ . . .

- Let us compose r+ with r

r+ ; r = (r ∪ r2 ∪ r3 ∪ . . . ∪ rn ∪ . . .) ; r
= r ; r ∪ r2 ; r ∪ . . . ∪ rn ; r ∪ . . .
= r2 ∪ r3 ∪ . . . ∪ rn+1 ∪ . . .

Hence we have . . . a fixpoint equation

r+ = r ∪ (r+ ; r)
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Mathematical Definition of Transitive Closures 50

- r+ and r∗ are thus fixpoints of some functions

r+ =̂ fix(λs · s ∈ S↔ S | r ∪ (s ; r))

r∗ =̂ fix(λs · s ∈ S↔ S | id ∪(s ; r))

- Notice that these functions are monotone
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Main Results (similar results for r∗, except for wf) 51

r ⊆ r+

r+ ; r ⊆ r+

∀s · r ⊆ s
s ; r ⊆ s
⇒
r+ ⊆ s

r+ ; r+ ⊆ r+ ∀b · r[b] ⊆ b ⇒ r+[b] ⊆ b

r+ = r ∪ (r ; r+) r+ = r ∪ (r+ ; r)

wf(r) ⇒ wf(r+) (r−1)+ = (r+)−1

- DEMO
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4. Computation

56



The Forward Approach 52

- The forward relation

r ⊆ A×A

- The pre-condition set

p ⊆ A

- The constraint

p×A ⊆ r
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The Backward Approach: Set Transformer 53

- The backward set transformer:

F ∈ P(A)→ P(A)

- The constraint: conjunctivity property

F (q1 ∩ q2) = F (q1) ∩ F (q2)

- Monotonicity: this is a consequence of conjunctivity

q1 ⊆ q2 ⇒ F (q1) ⊆ F (q2)
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From Forward Approach (r, p) to Backward Approach (F ) 54

- We want to derive F from r and p.

F (q) = p ∩ r−1[q]

- The constraint F (q1 ∩ q2) = F (q1) ∩ F (q2) is easy to prove
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From Backward Approach (F ) to Forward Approach (r, p) 55

- We want to derive r and p from F .

p = F (A)

r = {x 7→ x′ |x /∈ F ({x′})}

- The constraint p×A ⊆ r is easy to prove
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Computation Combinators. Some Examples 56

sequencing S1;S2

choice S1 u S2

parallelism S1 || S2

guarding G =⇒ S

pre-conditioning P |S

... ...
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Computation Combinators. Some Examples (cont’d) 57

- Forward and backward interpretation can be given for each of them.

- Corresponding constraints can be proved for each of them.
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Iteration: the While Loop 58

- Iteration usually studied under the form of a while loop:

while G do S end

- The unfolding of the while loop yields:

while G do S end =

if G then
S; while G do S end

else
skip

end

- We do not formalize iteration with the while loop: too complicated!
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The Abstract Iteration Combinator 59

- We use the following abstract iteration combinator, S O.

- here is the unfolding of the abstract iteration:

S O = skip u (S ; S O)

- The while loop can then be defined with various combinators:

while G do S end =̂ (G =⇒ S)O ; (¬G =⇒ skip)
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Backward Approach to Abstract Iteration 60

- Given a set transformer G, let p |G be the set transformer where:

(p |G)(k) =̂ p ∩ G(k)

- Translating abstract iteration to the backward set transformer yields:

F O(q) = q ∩ F (F O(q))

- Then we have a fixpoint:

F O(q) = (q |F )(F O(q))

65



Backward Approach to Abstract Iteration (cont’d) 61

- We defined F O(q) as the least fixpoint of the set function q |F :

F O(q) =̂ fix(q |F )

- We also define the greatest fixpoint:

F M(q) =̂ FIX(q |F )

- Here is the provable relationship between these two combinators:

FO = fix(F ) |F M

- We can prove the conjunctivity of these combinators
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Forward Approach to Iteration: the Pre-condition Set 62

- We have pO = FO(A) = fix(A |F ), thus:

pO = fix(F )

- By taking the complement, we obtain

pO = p ∪ r−1[pO]

- An interesting informal explanation of pO

- We can also prove that the relation pO� r is well-founded
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Forward Approach to Iteration: the Relation 63

- We also derive it from the backward approach:

rO = (fix(F )×A) ∪ r∗

- rO obeys the same fixpoint equation as r∗

- rO is the greatest fixpoint of the same function as for r∗

- DEMO
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5. Real Numbers
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Axioms: Addition 64

1. Addition is associative: x+ (y + z) = (x+ y) + z

2. Addition is commutative: x+ y = y + x

3. Addition has an identity: x+ 0 = x

4. Addition has an inverse: x+ (−x) = 0
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Axioms: Multiplication 65

5. Multiplication is associative: x ∗ (y ∗ z) = (x ∗ y) ∗ z

6. Multiplication is commutative: x ∗ y = y ∗ x

7. Multiplication has an identity: x ∗ 1 = x

8. Additive and multiplicative identities are different: 0 6= 1

9. Distributivity of multiplication: x ∗ (y + z) = (x ∗ y) + (x ∗ z)

10. Multiplication has an inverse: x 6= 0 ⇒ x ∗ 1
x = 1
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Axioms: Order 66

11. Reflexivity: x ≤ x

12. Antisymmetry: x ≤ y ∧ y ≤ x ⇒ x = y

13. Transitivity: x ≤ y ∧ y ≤ z ⇒ x ≤ z

14. Totality: x ≤ y ∨ y ≤ x

15. Addition and order: x ≤ y ⇒ x+ z ≤ y + z

16. Multiplication and order: x ≤ y ∧ 0 < z ⇒ x ∗ z ≤ y ∗ z
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Axioms: Completeness 67

17. Completeness: Every non empty subset of reals with an

upper bound has a least upper bound:

∀A ·A ⊆ R
A 6= ∅
∃UB · UB ∈ R ∧ (∀x · x ∈ A ⇒ x ≤ UB)
⇒

sup(A) ∈ R
∀x · x ∈ A ⇒ x ≤ sup(A)
∀v · v ∈ R ∧ (∀x · x ∈ A ⇒ x ≤ v) ⇒ sup(A) ≤ v

- R is a totally ordered complete field
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Some elementary Properties of R 68

0 ∗ 0 = 0

Proof

0 ∗ 0 = (0 ∗ 0) + 0 = (0 ∗ 0) + (0 ∗ 1) = 0 ∗ (0 + 1) = 0 ∗ 1 = 0

0 ∗ (−1) = 0

Proof

0 ∗ (−1) = 0 ∗ (−1) + 0 = 0 ∗ (−1) + 0 ∗ 1 = 0 ∗ ((−1) + 1) =
0 ∗ (1 + (−1)) = 0 ∗ 0 = 0

0 < 1

Proof

1 < 0 ⇔ 0 < (−1) ⇒ 1 ∗ (−1) < 0 ∗ (−1) ⇔ −1 < 0⇔
0 < 1 ⇔⊥

1 = 0 ⇔⊥

0 < 1
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Some elementary Properties of R (cont’d) 69

0 ∗ x = 0

Proof

0 ∗ x > 0 ⇒ 0 ∗ (0 ∗ x) < 1 ∗ (0 ∗ x)⇔
(0 ∗ 0) ∗ x < 0 ∗ x ⇔ 0 ∗ x < 0 ∗ x ⇔⊥

0 ∗ x < 0 ⇒ 0 < 0 ∗ (−x) ⇒ 0 ∗ (0 ∗ (−x)) < 1 ∗ (0 ∗ (−x))⇔
(0 ∗ 0) ∗ (−x) < 0 ∗ (−x) ⇔ 0 ∗ (−x) < 0 ∗ (−x) ⇔⊥

0 ∗ x = 0
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Natural Numbers as a Subset of the Reals 70

N = fix(λs · s ⊆ R | {0} ∪ (λx · x ∈ R | x+ 1)[s])

N ⊆ R

- Archimedean Property:

∀x ·x ∈ R ⇒ ∃n · n ∈ N ∧ n > x
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A proof from Internet 71

The proof is by contradiction. Suppose N is bounded above. Since N

is a non empty subset of R, then by the completeness axiom it must

follows that ∃α ∈ R : α = supN. Since α is the least upper bound,

α−1 is not an upper bound and thus there exists n0 ∈ N : α−1 <

n0. But then n0+1 ∈ N and α < n0+1, contradicting that α was

an upper bound for N.
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“ε,δ” Continuity at Point c for Real Function f 72

∀ f, c · f ∈ R→ R
c ∈ R
continuous(f, c)
⇒
∀ε · ε > 0
⇒
∃ δ · δ > 0 ∧ (∀x · x ∈ ]c− δ, c+ δ[ ⇒ f(x) ∈ ]f(c)− ε, f(c) + ε[)
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Intermediate Value Theorem 73

If f is a continuous function then, given a real number u in the open

interval ]f(a), f(b)[, there exists a real number c in the open interval

]a, b[ such that f(c) = u.

∀ a, b, f, u · f ∈ R→ R
∀x ·x ∈ R ⇒ continuous(f, x)
a ∈ R
b ∈ R
a < b
u ∈ ]f(a), f(b)[
⇒
∃ c · c ∈ ]a, b[ ∧ f(c) = u

- Showing a proof from internet

- DEMO
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6. Some Theorems:

Zermelo Theorem, Cantor-Bernstein Theorem

80



The Well-ordering Theorem (Zermelo 1904) 74

Every set can be well-ordered
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Refresher on Orders 75

- Partial order

- Well-order

- Transporting well-orders

82



Partial Order q on a set S 76

- Relation: q ∈ S↔ S

- Reflexive: id ⊆ q

- Transitive: q ; q ⊆ q

- Anti-symmetric: q ∩ q−1 ⊆ id

- Example: the set inclusion relation is a partial order

Reflexivity: A ⊆ A
Transitivity: A ⊆ B ∧ B ⊆ C ⇒ A ⊆ C
Anti-symmetry: A ⊆ B ∧ B ⊆ A ⇒ A = B
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Well-order q on a set S 77

- Partial order: q is a partial order on S

- Each non-empty subset A of S has a smallest element x:

∀A ·A ⊆ S ∧ A 6= ∅ ⇒ (∃x · x ∈ A ∧ A ⊆ q[{x}])

84



Transporting a Well-order q by Means of an Injection f 78

- We are given two sets S and T

- We suppose that a relation q is a well-order on T

- We are given a total injection f from S to T : f ∈ S� T

- Theorem 1: f ; q ; f−1 is a well-order on S

- Mind the polymorphism on S and T .
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Strategy for Proving that a Set S can be Well-ordered 79

- We apply Theorem 1

- For this:

(1) We construct a well-order q on a certain set T

(2) We construct a total injection f from S to T

- This is done by:

(1) Using some Assumptions and Definitions

(2) Later proving the Assumptions

- More on this is skipped
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The Theorem of Cantor Bernstein Schröder 80

- Given two sets S and T

- We have a total injective function f from S to T : f ∈ S� T

- We have a total injective function g from T to S: g ∈ T � S

- Hence, there exists a bijection h fom S to T : h ∈ S�� T
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Cantor-Bernstein-Schröder Theorem (history) 81

1887 Dedekind proves the theorem but does not publish it.

1895 Cantor states the theorem in his first paper on set theory

1896 Schröder announces a proof

1897 Bernstein, a student of Cantor, presents his proof.

1897 Dedekind independently proves it a second time.
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Dedekind and Cantor 82

89



Schröder and Bernstein 83

90



Proof Found on internet (1) 84

Assume without loss of generality that A and B are disjoint. For any a

in A or b in B we can form a unique two-sided sequence of elements

that are alternately in A and B, by repeatedly applying and to go right

and and to go left (where defined).

For any particular a, this sequence may terminate to the left or not,

at a point where or is not defined. Call such a sequence (and all its

elements) an A-stopper, if it stops at an element of A, or a B-stopper

if it stops at an element of B. Otherwise, call it doubly infinite if all the

elements are distinct or cyclic if it repeats. See the picture for exam-

ples. By the fact that and are injective functions, each a in A and b

91



in B is in exactly one such sequence to within identity, (as if an ele-

ment occurs in two sequences, all elements to the left and to the right

must be the same in both, by definition). Therefore, the sequences

form a partition of the (disjoint) union of A and B. Hence it suffices

to produce a bijection between the elements of A and B in each of

the sequences separately, as follows: For an A-stopper, the function

is a bijection between its elements in A and its elements in B. For a

B-stopper, the function is a bijection between its elements in B and its

elements in A. For a doubly infinite sequence or a cyclic sequence,

either or will do ( is used in the picture).



Proof Found on internet (2) 85

The proof below is from a 1994 paper by Peter G. Doyle and John

Horton Conway.

We want to show that given injections f : A→ B and g : B→ A we

can determine a one-to-one correspondence between A and B. We

can and will assume that A and B are disjoint. Here’s how it goes.

We visualize the set A as a collection of blue dots, and the set B as

a collection of red dots. We visualize the injection f as a collection of

blue directed arcs connecting each element x ∈ A to its image f(x) ∈
B. Similarly, we visualize g as a collection of red directed arcs. If we

put in both the blue and the red arcs, we get a directed graph where

every vertex has one arc going out and at most one arc coming in.
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Such a graph decomposes into a union of connected components,

each of which is either a finite directed cycle, a doubly-infinite path,

or a singly-infinite path. As you go along one of these paths or cycles,

the vertices you encounter belong alternately to A and B. In the case

of a cycle or a doubly-infinite path, the blue arcs define a one-to-one

correspondence between the blue vertices of the component and the

red vertices. In the case of a singly-infinite path, the blue edges will

still determine a one-to-one correspondence between the blue and

red vertices of the path if the path begins with a blue vertex, but not

if the path begins with a red vertex. However in this latter case we

can take the red edges instead. Thus we can pair up the vertices of

A and B along each connected component, and the union of these

correspondences determines a one-to-one correspondence between

A and B.



A Simple Proof 86

- Let x ⊆ S and y ⊆ T such that:

f [x] = y that is y = f [x]

g[y] = x that is x = g[y]

- We can prove the following (proved AUTOMATICALLY by Rodin):

(x � f) ∪ (y � g)−1 ∈ S�� T

- By eliminating y, we obtain:

x = g[f [x]]

- We can then take x as a fixpoint (notice the monotonicity)

x = fix(λs · s ⊆ S | g[f [s]])

- DEMO
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Conclusion (4 years ago) 87

- The pros:

- all proofs done with the Rodin Platform

- all proofs done "easily"

- The cons:

- theorems cannot be reused easily

- they have to be instantiated manually

- What next (the solution):

- mathematical extensions: NOW WE HAVE IT
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