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Outline: Some Mathematical Studies

- Some important mathematical concepts (in Computer Science):

1. Well-foundedness
2. Fixpoint

3. Transitive closure
4. Computation

5. Real Numbers

6. Some theorems (time permiting)



Purpose of this Presentation

- We want to do some mathematical studies of these fields

- Showing some generic proofs done with the “Theory” plug-in



1. Well-foundedness



Motivation for Well-founded Sets and Relations

- This mathematical structure formalizes the notion of reachabllity

- A discrete transition process, which:

- either terminates

- or eventually reaches certain states

- Is formalized by means of well-founded traces



A Well-founded Relation
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A Well-founded Relation

- From any point in the graph

- You always reach a red point after a FINITE travel



Relations which are not Well-founded: no Red Points

- A cycle

A\ %

- An infinite chain




Non-empty Set p Containing a Cycle or an Infinite Chain 10

4

Forallxz inp

Vex-x €p =



Set p Containing a Cycle or an Infinite Chain

11

For all x in p there existsa y inp

Ve-x€p = (Jy-yeEp A




Set p Containing a Cycle or an Infinite Chain

12

For all  in p there exists a y in p related to « by relation r

Ve-x€p = (Ay-yE€p AN x—y eEr)



Set p Containing a Cycle or an Infinite Chain

13

For all  in p there exists a y in p related to x by relation r

Ve-x €p = (y-y€Ep N c—>y€Eer)



Definition of a Well-founded Relation

14

- A well-founded relation does not contain suchasetp ...

- ...unless it is the empty set

wf(r) = Vp-pCrilp = p=o




Another Definition

15

- Every non-empty subset p has at least one r-maximal element x

p

- That is, « is NOT related to another point in p



Another Definition

16

- For every non-empty subset p then

Vp: p#O



Another Definition

17

- For every non-empty subset p then

- there exists a point « of p such that

Vp: p#O
=
dr-x €p A



Another Definition

18

- For every non-empty subset p then
- there exists a point x of p such that

- forall z in p,

Vp: p#O
=
Jr-xep AN (Vz-z€p =



Another Definition

19

- For every non-empty subset p then
- there exists a point x of p such that

- forall z in p,  is NOT related to z

Vp: p#O
=
Je-x€ep AN Vz-z€p = x— z&71)



Another Definition 20

- For every non-empty subset p then
- there exists a point x of p such that

- forall z in p, & is NOT related to z

wf(r) & Vpp# 9 = Jx-x€p AN (Vz:2z€p = x+— z&r)

- Can we explain this?



Manual Proof

21

p#Y = dx-xe€p AN Vz-z2€Ep = x—2&r1)
~ contraposition
—(Jz-z€p AN Vz-z€p=>x—=>2¢T)) > p=0
Aag de Morgan
(Ve-z€p = ~(Vz-z2€p > xz—2¢r)) = p=0
= de Morgan
Ve-x€p = (z-zEPp AN x+—2€ET) = p=09
<~ set theory

pCripl = p=o



Induction Principle: for Proving Properties of w.f. Sets 22




Induction Principle: for Proving Properties of w.f. Sets 23

If for any «

then



Induction Principle: for Proving Properties of w.f. Sets 24

If for any «

iIf under the assumption that Q(y) holds for all y s.t. © — y € » then

then

Ve-Vy-z—yer = Qly)) =
—



Induction Principle: for Proving Properties of w.f. Sets 25

If for any «
if under the assumption that Q(y) holds for all y s.t. © — y € » then
you can prove a property Q(x)

then

Ve-(Vy-z—yer = Qy)) = Qx)
=



Induction Principle: for Proving Properties of w.f. Sets 26

If for any «
if under the assumption that Q(y) holds for all y s.t. © — y € » then
you can prove a property Q(x)

then

Q(z) holds for all zin S

Ve-(Vy-z—yer = Qy)) = Qx)
—
Vz-z€ S = Q(z)



Induction Principle: for Proving Properties of w.f. Sets 27

Ve .- (Vy-z—yer = Q) = Q)
—
Vz-ze€ S = Q(z)




Induction Principle: for Proving Properties of w.f. Sets 28

Ve .- (Vy-z—yer = Q) = Q)
—
Vz-ze€ S = Q(z)

- We replace the predicate Q(_) by the set ¢



Induction Principle: for Proving Properties of w.f. Sets 29

Ve .- (Vy-z—yer = Q) = Q)
=
Vz-z€ S = Q(z)

- We replace the predicate Q(_) by the set ¢

Ve-Vy-x—y€r = yeq) = x €q
-
Vz-z€ S = z€q




Induction Principle: for Proving Properties of w.f. Sets 30

Ve .- (Vy-z—yer = Q) = Q)
—
Vz-ze€ S = Q(z)

- And now we quantify over g (previous is 2nd order over Q)

Vg Ve-Vy-x—y€E€r = yeq) = xE€q
-
Vz-z€ S8 = z€q




Induction Principle: for Proving Properties of w.f. Sets 31

Vg Ve-Vy-z—yeEr = yeq) = x €q
-
Vz-z€ S = z€E€q

- The final touch:

Vr - wf(r) = (Vg-Vx-r[{z}] Cq = z€q) = S Cq)




How to Prove that a Relation is Well-founded? 1st approach 32

- If p is included in a well-founded relation g, then sois p

Vp,g-q €SS N wf(g) AN pCq = wf(p)

- Intuition: If g has no cycle or infinite chain, then so is p



How to Prove that a Relation is Well-founded? 2nd Approach 33

- We connect S and T' by means of a relation v

veE ST

Some conditions ?

- Here is what we have to prove

wf (q)

Some conditions
—

wf (p)




How to Prove that a Relation is Well-founded? 2nd Approach 34

- Here is what one has to prove:

peES—S
qel T

wf (q)
ve ST

dom(v) = S p
v hip C ogsvT

wf (p)




A Useful Lemma

35

- The relations v is a total function: v € S — T

e V(y)

V(x) o
T ,,

X y

- Here is what we have to prove:

— T




A Given Well-founded Relation

36

- Here is what we would like to prove:

wf{x—y|lzxeNAyeN A y<a})




Putting the Previous Results Together

37

reESS

veES—-N

Ve,y-x—y er = v(y) < v(x)
=

wf (r)

- This introduces the concept of variant

- DEMO



2. Fixpoint



Motivation for Fixpoint

38

- This mathematical concept is used to formalize recursion



Definition

39

- We are given a set function f

f € P(S) — P(S5)

- We would like to construct a subset, fix(f), of S such that:

fix(£) = £(x(f))

- Proposal

fix(f) = inter({s|f(s) C s})



Two Useful Lemmas

40

- fix(f) is a lower bound of the set {s | f(s) C s}

Vs- f(s) Cs = fix(f) Cs

- fix(f) is the greatest lower bound of the set {s | f(s) C s}

vv.(vs.f(s)gs = fvgs) == vgfiX(f)




The Main Results (Knaster-Tarski)

41

- Additional needed constraint: f is monotone

Va,b-a Cb = f(a) C f(b)
—

fix(£) = £(ix(f))

- fix(f) is the least fixpoint

Vt-t = f(t) = fix(f) Ct




Complement and Conjugate 42

- Given a set k of type P(S), the complement, k, of k is as follows:
k= S\k

- Given a function f:

f € P(s) = P(s)

- Then, the conjugate, f, of f is defined as follows:

~

f 2 Xe-kCs|h(k)

- Properties:

ol
|
>

S)!
|
<



Greatest Fixpoint

43

- Given a function f:
f € P(S) — P(S5)

- The set FIX( f) is defined as follows:

FIX(F) 2 fix(f)

- Therefore, we have

fix(f) = FIX(f)



Greatest Fixpoint Properties

44

- The following can be proved:

- DEMO

FIX(f) = union({s|s C f(s)})

Va,b-a Cb = f(a) C f(b)
—
FIX(f) = f(FIX(f))

Vt-t = f(t) = ¢t C FIX(f)



Connecting Recursion to Well-foundedness 45

- A very important theorem by Tarski (1955) and Montague (1955)

- Let r be a well-founded relationon S: r»r € S+ S
Let g be a a function such that: ge(S+T)—>T
There is a unique total function f: fesS—->T

such that we have:

Ve-xz €S = f(z)=g(r[iz}] < f)




Connecting Recursion to Well-foundedness

46

Ve-xz €S = f(z)=g(rl{z}] <f)

Q ? D r[{x/]

r

X

- The value of the function f at « depends on its values on r[{x }]

- More on this is skipped



3. Transitive Closure



Motivation for Transitive Closure

47

- Transition system achievement



Naive Approach at the Irreflexive Transitive Closure » T

48

- We are given a relation r built on a set S:

reS«< S

- The irreflexive transitive closure » of r is "defined" as follows:

rt = pUPriu...Uur"U...



Naive Approach at the Irreflexive Transitive Closure » T

49

rt = pUPriu...UuruU...

- Let us compose =T with r

Jsr

rtsr = (ruUTT?uUurdu... U uU..
= ryr Url;r U ... U r;r U ...
= 2 uUurdu...u "ty ..,

Hence we have ... a fixpoint equation

rt = rU (rT;7)




Mathematical Definition of Transitive Closures

50

- T and r* are thus fixpoints of some functions

P

fix(As-s €S> S|ruU(s;r))

,,,,*

fix(As-s€ S+ S|idU(s;r))

- Notice that these functions are monotone



Main Results (similar results for r*, except for wf)

51

- DEMO

Vb-r[b] Cb = rt[b] Cb

rt=rU(r;rt)

wi(r) = wi(r+)

rt=rU((rt;r)

(r=H)" ="~




4. Computation



The Forward Approach

92

- The forward relation

- The pre-condition set

- The constraint

rCAXA




The Backward Approach: Set Transformer

53

- The backward set transformer:

F cP(A) —-P(A)

- The constraint: conjunctivity property

F(gl N q2) = F(ql) N F(q2)

- Monotonicity: this is a consequence of conjunctivity

gl C q2 = F(ql) C F(q2)




From Forward Approach (r, p) to Backward Approach (F’) 54

- We want to derive F' from r and p.

F(qg) = p N r~1[q

- The constraint F'(q1 N qg2) = F(ql) N F'(q2) is easy to prove



From Backward Approach (F’) to Forward Approach (r, p) 55

- We want to derive r» and p from F'.

p = F(A)

- The constraint p X A C r is easy to prove



Computation Combinators. Some Examples

56

sequencing S1; 52
choice S11mM.S2
parallelism S1 || S2
guarding G— S
pre-conditioning P|S




Computation Combinators. Some Examples (cont’d) 57

- Forward and backward interpretation can be given for each of them.

- Corresponding constraints can be proved for each of them.



Iteration: the While Loop 58

- lteration usually studied under the form of a while loop:
while G do S end

- The unfolding of the while loop yields:

if G then
S;while G do S end
while G do S end = |else
skip
end

- We do not formalize iteration with the while loop: too complicated!



The Abstract Iteration Combinator

59

- We use the following abstract iteration combinator, S V.

- here is the unfolding of the abstract iteration:
SY = skip M (§;8")
- The while loop can then be defined with various combinators:

while G do S end = (G = S)'; (-~ G = skip)



Backward Approach to Abstract Iteration 60

- Given a set transformer G, let p | G be the set transformer where:
(p|G)(k) = pN G(k)
- Translating abstract iteration to the backward set transformer yields:
FV(q) = qN F(F"(q))

- Then we have a fixpoint:

F'(q) = (q¢|F)(F "(q))



Backward Approach to Abstract lteration (cont'd) 61

- We defined F' V(q) as the least fixpoint of the set function q | F":

F'(q) = fix(q|F)

- We also define the greatest fixpoint:

F2(q) = FIX(q|F)

- Here is the provable relationship between these two combinators:
FV = fix(F)|F*

- We can prove the conjunctivity of these combinators



Forward Approach to Iteration: the Pre-condition Set

- We have p¥ = FV(A) = fix(A | F), thus:

p’ = fix(F)

- By taking the complement, we obtain

= p U r1[pY]

i

- An interesting informal explanation of pV

- We can also prove that the relation p“<1 r is well-founded



Forward Approach to lteration: the Relation

63

- We also derive it from the backward approach:

rV = (fix(F) x A) U r*

- ¥ obeys the same fixpoint equation as r*

- 7V is the greatest fixpoint of the same function as for r*

- DEMO



5. Real Numbers



Axioms: Addition

64

1. Addition is associative: ¢ + (y + z) = (x + y) + =

2. Addition is commutative: * +y =y + x

3. Addition has an identity: « +- 0 = «x

4. Addition has an inverse: « + (—x) = 0



Axioms: Multiplication 65

5. Multiplication is associative: « * (y * z) = (x * y) * 2

6. Multiplication is commutative: « * y = y * «

/. Multiplication has an identity: « « 1 = «

8. Additive and multiplicative identities are different: 0 = 1

9. Distributivity of multiplication: = * (y + z) = (z * y) + (x * 2)

10. Multiplication has an inverse:  # 0 = = % + = 1



Axioms: Order

66

11. Reflexivity: * < x

12. Antisymmetry: x <y AN y<x = =1y

13. Transitivity: « <y AN y<z = =<z

14. Totality: « <y V y < x

15. Additionandorder: c <y = x4+ 2z <y + =z

16. Multiplicationandorder: x <y A 0< 2z = xz < Yy *Zz



Axioms: Completeness 67

17. Completeness: Every non empty subset of reals with an

upper bound has a least upper bound:

VA-ACR
AF# O
JUB-UB€eR N Ve-x € A = o< UB)
=
sup(A) € R
Ve-x € A = x < sup(A)
Vv-veER A (Ve-x€ A = < v) = sup(Ad) <w

- R is a totally ordered complete field



Some elementary Properties of R

68

0x0=0
Proof

0x0=(0%0)+0=(0x0)+(0%x1)=0%x(0+1)=0%1=0

O0x(—1)=0
Proof
O0x(—1) = 0%(—=1)4+0 = 0% (—=1)+0x1 = 0% ((—1)+1) =
Ox(1+(—1)) = 0«0 = 0
0<1
Proof
1<0 & 0<(-1) =>1x(-1)<0x*x(-1) & —-1<0&
0<1 & L
1=0 &L

=)
N
ek



Some elementary Properties of R (cont'd) 69

Oxx=20
Proof

Oxx>0 = 0x(0*xx) <1x*(0xx) <
0x0)*xx<0xx ©0xx<0xx < L

Oxx <0 = 0<0*%x(—x) = 0x(0*x(—x)) <1x%x(0x*(—x))
(0x0)*(—x) <0*x(—x) & 0x(—x) <0x(—x) & L

Oxax =20



Natural Numbers as a Subset of the Reals

/70

N=fix(As:s CR|{0} U (Xx-x €R|x+1)[s])

N C R

- Archimedean Property:

Ve-x €ER == dn-n€N A n><x



A proof from Internet 71

The proof is by contradiction. Suppose N is bounded above. Since N
IS a non empty subset of R, then by the completeness axiom it must
follows that da € R : a« = supN. Since « is the least upper bound,
o — 1 is not an upper bound and thus there exists n0 e N: a—1 <
n0. Butthenn0+4+ 1 € Nand o« < n0+ 1, contradicting that o« was

an upper bound for N.



“€,0” Continuity at Point c for Real Function f

/2

Vfec- fER—-R
ce R
continuous(f, ¢)
=X
Ve- € >0
=
366 >0 AN Vx-x €lc—0d,c+ 9] = f(x) €f(c)—¢€, f(c)+ €])



Intermediate Value Theorem 73

If f is a continuous function then, given a real number w in the open

interval | f(a), f(b)], there exists a real number c in the open interval
la, b[ such that f(c) = w.

Va,b, f,u- f € R—R
Va-x € R = continuous(f, x)
a € R
beR
a<b

u € |f(a), f(b)]

=N
Jc-c €la,b] A f(c) =u

- Showing a proof from internet
- DEMO



6. Some Theorems:
Zermelo Theorem, Cantor-Bernstein Theorem



The Well-ordering Theorem (Zermelo 1904)

74

Every set can be well-ordered




Refresher on Orders

75

- Partial order

- Well-order

- Transporting well-orders



Partial Order ¢ on a set S

/6

- Relation: geS—S
- Reflexive: id C ¢q
- Transitive: qg;q C g

- Anti-symmetric: gnqg1Cid

- Example: the set inclusion relation is a partial order
Reflexivity: ACA
Transitivity: ACBANBCC = ACC
Anti-symmetry: ACBANBCA= A=B



Well-order ¢ on a set S

77

- Partial order: q is a partial order on S

- Each non-empty subset A of S has a smallest element «:

VA-ACSANA#42 = Bz-z€ AN AC q[{z})



Transporting a Well-order ¢ by Means of an Injection f

/8

- We are given two sets S and T

- We suppose that a relation g is a well-order on T’

- We are given a total injection f from S to T": fes—mT

- Theorem 1: fiq; f~1isawell-orderon S

- Mind the polymorphism on S and T'.



Strategy for Proving that a Set S can be Well-ordered

/9

- We apply Theorem 1

- For this:
(1) We construct a well-order g on a certain set T

(2) We construct a total injection f from S to T
- This is done by:
(1) Using some Assumptions and Definitions

(2) Later proving the Assumptions

- More on this is skipped



The Theorem of Cantor Bernstein Schroder

80

- Given two sets S and T’

- We have a total injective function f from StoT: f € S — T

- We have a total injective functiong fromT'to S: g € T — S

- Hence, there exists a bijection h fom StoT: h € S — T



Cantor-Bernstein-Schroder Theorem (history) 81

1887 Dedekind proves the theorem but does not publish it.

1895 Cantor states the theorem in his first paper on set theory

1896 Schroder announces a proof

1897 Bernstein, a student of Cantor, presents his proof.

1897 Dedekind independently proves it a second time.



Dedekind and Cantor

82




Schroder and Bernstein

83

E.SCHRODER




Proof Found on internet (1) 84

Assume without loss of generality that A and B are disjoint. For any a
iIn A or b in B we can form a unique two-sided sequence of elements
that are alternately in A and B, by repeatedly applying and to go right

and and to go left (where defined).

For any particular a, this sequence may terminate to the left or not,
at a point where or is not defined. Call such a sequence (and all its
elements) an A-stopper, if it stops at an element of A, or a B-stopper
If it stops at an element of B. Otherwise, call it doubly infinite if all the
elements are distinct or cyclic if it repeats. See the picture for exam-

ples. By the fact that and are injective functions, each ain A and b



In B is in exactly one such sequence to within identity, (as if an ele-
ment occurs in two sequences, all elements to the left and to the right
must be the same in both, by definition). Therefore, the sequences
form a partition of the (disjoint) union of A and B. Hence it suffices
to produce a bijection between the elements of A and B in each of
the sequences separately, as follows: For an A-stopper, the function
IS a bijection between its elements in A and its elements in B. For a
B-stopper, the function is a bijection between its elements in B and its
elements in A. For a doubly infinite sequence or a cyclic sequence,

either or will do ( is used in the picture).



Proof Found on internet (2) 85

The proof below is from a 1994 paper by Peter G. Doyle and John

Horton Conway.

We want to show that given injectionsf: A —-Bandg: B — Awe
can determine a one-to-one correspondence between A and B. We
can and will assume that A and B are disjoint. Here’s how it goes.
We visualize the set A as a collection of blue dots, and the set B as
a collection of red dots. We visualize the injection f as a collection of
blue directed arcs connecting each element x € A to its image f(x) €
B. Similarly, we visualize g as a collection of red directed arcs. If we
put in both the blue and the red arcs, we get a directed graph where

every vertex has one arc going out and at most one arc coming in.



Such a graph decomposes into a union of connected components,
each of which is either a finite directed cycle, a doubly-infinite path,
or a singly-infinite path. As you go along one of these paths or cycles,
the vertices you encounter belong alternately to A and B. In the case
of a cycle or a doubly-infinite path, the blue arcs define a one-to-one
correspondence between the blue vertices of the component and the
red vertices. In the case of a singly-infinite path, the blue edges will
still determine a one-to-one correspondence between the blue and
red vertices of the path if the path begins with a blue vertex, but not
If the path begins with a red vertex. However in this latter case we
can take the red edges instead. Thus we can pair up the vertices of
A and B along each connected component, and the union of these
correspondences determines a one-to-one correspondence between
A and B.



A Simple Proof

86

-Letx C S and y C T such that:

flz] =y thatis y = f[x]

gly] =z thatis x= = g|y]

- We can prove the following (proved AUTOMATICALLY by Rodin):

(z<f)U(y<g) ' €S—T

- By eliminating vy, we obtain:

xr = g[f[x]]

- We can then take x as a fixpoint (notice the monotonicity)

x = fix(As - s C S|g[f[s]])

- DEMO



Conclusion (4 years ago)

87

- The pros:
- all proofs done with the Rodin Platform

- all proofs done "easily"

- The cons:
- theorems cannot be reused easily

- they have to be instantiated manually

- What next (the solution):
- mathematical extensions: NOW WE HAVE IT



