
Reflections on the teaching of Formal Methods,
Requirements & Software Engineering

Ken Robinson

UNSW Australia

ABZ2014 Conference Workshop June 2014



Reflections on talk

Comment
This talk contains assertions that hopefully will provoke discussion.
The intention is to explore and provoke some aspects of how
reliable software modelling and implementation might be pursued.



Software Models vs Engineering Models

Observation
Some academic staff seem to regard many software formal
methods as equal

Example

The formal methods Z and B are equivalent to Event-B.

Comment
Not so.
Even though Z and B were very significant contributions to formal
methods and Event-B is part of the same family, Event-B is
radically different to both Z and B.
Engineering models must contain forward and backward traces to
the requirements.
Something that neither Z, nor B, can achieve very effectively.
Event-B provides the capability of bidirectional tracing of
requirements to be incorporated in the model.



Software Models vs Engineering Models

Observation
Some academic staff seem to regard many software formal
methods as equal

Example

The formal methods Z and B are equivalent to Event-B.

Comment
Not so.
Even though Z and B were very significant contributions to formal
methods and Event-B is part of the same family, Event-B is
radically different to both Z and B.
Engineering models must contain forward and backward traces to
the requirements.
Something that neither Z, nor B, can achieve very effectively.
Event-B provides the capability of bidirectional tracing of
requirements to be incorporated in the model.



Software Models vs Engineering Models

Observation
Some academic staff seem to regard many software formal
methods as equal

Example

The formal methods Z and B are equivalent to Event-B.

Comment
Not so.
Even though Z and B were very significant contributions to formal
methods and Event-B is part of the same family, Event-B is
radically different to both Z and B.
Engineering models must contain forward and backward traces to
the requirements.
Something that neither Z, nor B, can achieve very effectively.
Event-B provides the capability of bidirectional tracing of
requirements to be incorporated in the model.



Software Models vs Engineering Models

Observation
Some academic staff seem to regard many software formal
methods as equal

Example

The formal methods Z and B are equivalent to Event-B.

Comment
Not so.
Even though Z and B were very significant contributions to formal
methods and Event-B is part of the same family, Event-B is
radically different to both Z and B.

Engineering models must contain forward and backward traces to
the requirements.
Something that neither Z, nor B, can achieve very effectively.
Event-B provides the capability of bidirectional tracing of
requirements to be incorporated in the model.



Software Models vs Engineering Models

Observation
Some academic staff seem to regard many software formal
methods as equal

Example

The formal methods Z and B are equivalent to Event-B.

Comment
Not so.
Even though Z and B were very significant contributions to formal
methods and Event-B is part of the same family, Event-B is
radically different to both Z and B.
Engineering models must contain forward and backward traces to
the requirements.

Something that neither Z, nor B, can achieve very effectively.
Event-B provides the capability of bidirectional tracing of
requirements to be incorporated in the model.



Software Models vs Engineering Models

Observation
Some academic staff seem to regard many software formal
methods as equal

Example

The formal methods Z and B are equivalent to Event-B.

Comment
Not so.
Even though Z and B were very significant contributions to formal
methods and Event-B is part of the same family, Event-B is
radically different to both Z and B.
Engineering models must contain forward and backward traces to
the requirements.
Something that neither Z, nor B, can achieve very effectively.

Event-B provides the capability of bidirectional tracing of
requirements to be incorporated in the model.



Software Models vs Engineering Models

Observation
Some academic staff seem to regard many software formal
methods as equal

Example

The formal methods Z and B are equivalent to Event-B.

Comment
Not so.
Even though Z and B were very significant contributions to formal
methods and Event-B is part of the same family, Event-B is
radically different to both Z and B.
Engineering models must contain forward and backward traces to
the requirements.
Something that neither Z, nor B, can achieve very effectively.
Event-B provides the capability of bidirectional tracing of
requirements to be incorporated in the model.



Is Software Engineering, Engineering?

The birth of the term Software Engineering

The term was coined at a NATO conference called in 1968 to
discuss the software crisis.

Where are we?
Are we any closer to realising the objectives of that event?

If not, why not?

Last time I looked, something like 85% of large software system
projects (multi-million dollars) failed because of failure to satisfy
the requirements.



Is Software Engineering, Engineering?

The birth of the term Software Engineering

The term was coined at a NATO conference called in 1968 to
discuss the software crisis.

Where are we?
Are we any closer to realising the objectives of that event?

If not, why not?

Last time I looked, something like 85% of large software system
projects (multi-million dollars) failed because of failure to satisfy
the requirements.



Is Software Engineering, Engineering?

The birth of the term Software Engineering

The term was coined at a NATO conference called in 1968 to
discuss the software crisis.

Where are we?
Are we any closer to realising the objectives of that event?

If not, why not?

Last time I looked, something like 85% of large software system
projects (multi-million dollars) failed because of failure to satisfy
the requirements.



Requirements for Engineering

In general, engineering requires:

I Rigorous requirements;

I Diligent implementation of those requirements;

I Legal responsibility for satisfying the contract.

Microsoft can say, and have done:
You chose this product, if it doesn’t work then it is your fault.



Requirements for Engineering

In general, engineering requires:

I Rigorous requirements;

I Diligent implementation of those requirements;

I Legal responsibility for satisfying the contract.

Microsoft can say, and have done:
You chose this product, if it doesn’t work then it is your fault.



Are there differences between ”engineering” disciplines?

Differences from older, conventional engineering disciplines

I Not continuous;

In general, cannot interpolate or extrapolate behaviour.

I Unstable
In general, other engineering implementations can tolerate
errors and find a stable configuration.

To those we can add:

I The implementation is not visible:
I With most other engineering disciplines the structure of the

implementaton is visible;
I or at least can be seen in similar terms to the requirements.
I This is where Event-B has important capabilities.



Are there differences between ”engineering” disciplines?

Differences from older, conventional engineering disciplines

I Not continuous;
In general, cannot interpolate or extrapolate behaviour.

I Unstable
In general, other engineering implementations can tolerate
errors and find a stable configuration.

To those we can add:

I The implementation is not visible:
I With most other engineering disciplines the structure of the

implementaton is visible;
I or at least can be seen in similar terms to the requirements.
I This is where Event-B has important capabilities.



Are there differences between ”engineering” disciplines?

Differences from older, conventional engineering disciplines

I Not continuous;
In general, cannot interpolate or extrapolate behaviour.

I Unstable

In general, other engineering implementations can tolerate
errors and find a stable configuration.

To those we can add:

I The implementation is not visible:
I With most other engineering disciplines the structure of the

implementaton is visible;
I or at least can be seen in similar terms to the requirements.
I This is where Event-B has important capabilities.



Are there differences between ”engineering” disciplines?

Differences from older, conventional engineering disciplines

I Not continuous;
In general, cannot interpolate or extrapolate behaviour.

I Unstable
In general, other engineering implementations can tolerate
errors and find a stable configuration.

To those we can add:

I The implementation is not visible:
I With most other engineering disciplines the structure of the

implementaton is visible;
I or at least can be seen in similar terms to the requirements.
I This is where Event-B has important capabilities.



Are there differences between ”engineering” disciplines?

Differences from older, conventional engineering disciplines

I Not continuous;
In general, cannot interpolate or extrapolate behaviour.

I Unstable
In general, other engineering implementations can tolerate
errors and find a stable configuration.

To those we can add:

I The implementation is not visible:
I With most other engineering disciplines the structure of the

implementaton is visible;
I or at least can be seen in similar terms to the requirements.
I This is where Event-B has important capabilities.



Formal Methods are not completely formal

The idea that formal methods provide absolute precision in
implementation because mathematical proof provides certainty is
unfortunately not correct.
Unfortunately, even rigorous requirements will be informal to some
extent, being written in some form of natural language.
But this puts Software Engineering to no greater disadvantage
than other engineering disciplines.

Despite evidence to the contrary
Software Engineering is surely possible?

Even if it is 45 years late!



Teaching of Event-B to Software Engineers

This is an addition to the talk given to the workshop.
An outline will be given of the courses given at the School of
Computer Science & Engineering (CSE) that Peter Ho and I
developed and delivered to Software Engineering undergraduate
students. The courses were designed to give a strong foundation in
software system design and implementation. Event-B featured
strongly in the requirements gathering and design stages.
The above is in the past tense as neither Peter nor I am now
teaching at CSE and the courses have not been maintained,
largely due to lack of familiarity of software system methods
beyond conventional computer science methods.



Requirements Gathering and Modelling

I Requirements gathering workshop
The first course is concerned with requirements gathering and
also the determination of requirements for the system to be
designed and implemented in subsequent courses by each
student team.

I System Modelling & Design
Event-B course that develops use of Event-B for modelling
systems. This course is standalone and is not limited to
Software Engineering students.
The course is based on the book: System Modelling & Design
a book I am writing and nearing completion. I am happy to
send a copy to anyone who is interested.



Developing Event-B Model from Informal Requirements

The second workshop develops an Event-B model based on the
requirements developed in the preceeding workshop and the course
on Event-B Modelling.
This is a quite difficult course partly due to the lack of familarity
with Event-B and also lack of experience in rigorous definitions of
behaviour (requirements).
At the end of this course each student team develops a scenario for
their model, which they then demonstrate using animation.



Implementation Workshop

In the final workshop of this series the teams decide on what
programming language they will use to implement their model and
then proceed with the implementation.
No Event-B implementation tool is used.
Despite the fact that no rigorous tool is used, requirements
tracing. in both directions, is required.
The students are encouraged to annotate their implementation
with Event-B event references to enable informal tracing back to
the formal model.
Despite the difficulty (lack of experience) with the rigorous
requirements followed by semi-rigorous implementation many
students gain significant experience from the overall procedure.


