
LOCKING

Michael Leuschel
Jens Bendisposto, Dominik Hansen

University of Düsseldorf

UN the Mysteries of an

ModelINTER

Chapter 17
• Formal model of an interlocking system

• Interlocking: safely operate signals and points
within an area of the train network

• no collisions, do not move points while trains
drive over, trains reach destination, …

Source: Images from Abrial, Event-B Book

Essentials of
Model

• Network divided into blocks (A-N below)

• Two special components: points (B,D,F,I,J below)
and crossings (K below)

• Statically determined routes (R1: L,A,B,D,E,F,G …
R10) protected by a signal

R3:

Chapter 17:
Comments

• Simplifying assumptions in Chapter 17 model:

• points only left or right (instantaneous moves),…

!

!

• But still “close” to real models

• Validation of big interlockings is challenging (cf. Paris
RER renovation project)

Proof, Animation, MC
• Event-B Model fully proven 

 ⇒ Why do we need to animate ?  
 Why do we need to model check ?

• Have we proven the right things ?

• Is the model too restrictive ? (Deadlocks)

• Is the model too permissive (undesirable
behaviour, configurations) ?

Animation (with ProB)
• Without providing topology; possible but not so

interesting

Note: identical routes (not prohibited by axioms)

How to instantiate a model
• Simply add axioms to your context 

Downside: interferes with proof activities

• Better: extend your context, refine your
machine to include context

context train_ctx0_beebook // contains data for the sample track layout in the Bee Book by Abrial	
 extends train_ctx0	
constants A B C D E F G H I J K L M N R1 R2 R3 R4 R5 R6 R7 R8 R9 R10	!
axioms	
 @axm44 partition(BLOCKS, {A}, {B}, {C}, {D}, {E}, {F}, {G}, {H}, {I},{J}, {K},{L},{M},{N})	
 @axm45 partition(ROUTES, {R1}, {R2}, {R3},{R4},{R5},{R6},{R7},{R8},{R9},{R10})	!!
 @compute_rtbl_from_nxt rtbl = {b↦r∣ r∈dom(nxt) ∧ (b∈dom(nxt(r)) ∨ b∈ran(nxt(r)))}	
 @axm40 nxt = {(R1 ↦ {L↦A, A↦B,B↦C}),	
 (R2 ↦ {L↦A, A↦B,B↦D,D↦E,E↦F, F↦G}),	
 (R3 ↦ {L↦A, A↦B,B↦D,D↦K,K↦J, J↦N}),	
 (R4 ↦ {M↦H,H↦I,I↦K,K↦F,F↦G}),	
 (R5 ↦ {M↦H,H↦I,I↦J,J↦N}),	
 (R6 ↦ {C↦B,B↦A,A↦L}),	
 (R7 ↦ {G↦F,F↦E,E↦D,D↦B,B↦A,A↦L}),	
 (R8 ↦ {N↦J,J↦K,K↦D,D↦B,B↦A,A↦L}),	
 (R9 ↦ {G↦F,F↦K,K↦I,I↦H,H↦M}),	
 (R10 ↦ {N↦J,J↦I,I↦H,H↦M})}	
 @axm41 fst = {(R1 ↦ L),(R2 ↦ L),(R3 ↦ L),	
 (R4 ↦ M),(R5 ↦ M),	
 (R6 ↦ C),	
 (R7 ↦ G),(R8 ↦ N),	
 (R9 ↦ G),(R10 ↦ N)}	
 @axm42 lst = {(R1 ↦ C),(R2 ↦ G),(R3 ↦ N),	

machine train_0_prob refines train_0
sees train_ctx0_prob	
…	
end

Rodin feature request:
extend all events

Graphical Visualization

Demo: ProB + BMotionStudio

Using the constraint solver
• We do not need to specify all values; we can

provide some values and let the ProB constraint
solver instantiate the other constants

context train_ctx2 extends train_ctx1	!
constants blpt lft rht	!
axioms	
 @axm1 blpt ⊆ BLOCKS // blocks with points: sets of blocks containing points	
 @axm2 lft ∈ blpt & BLOCKS	
 @axm3 rht ∈ blpt & BLOCKS	
 @axm4 lft ∩ rht = ∅	
 @axm5 ∀r·r∈ROUTES ⇒ (lft ∪ rht) ∩ (nxt(r) ∪ (nxt(r))∼) ∈ blpt⇸BLOCKS	
 @axm6 blpt ∩ ran(fst) = ∅	
 @axm7 blpt ∩ ran(lst) = ∅	!
end	

context train_ctx2_beebook extends train_ctx2 train_ctx1_beebook	
axioms	
 @prob_axm1 blpt = {B,D,F,I,J}	
end	

context train_ctx2 extends train_ctx1	!
constants blpt lft rht	!
axioms	
 @axm1 blpt ⊆ BLOCKS // blocks with points: sets of blocks containing points	
 @axm2 lft ∈ blpt & BLOCKS	
 @axm3 rht ∈ blpt & BLOCKS	
 @axm4 lft ∩ rht = ∅	
 @axm5 ∀r·r∈ROUTES ⇒ (lft ∪ rht) ∩ (nxt(r) ∪ (nxt(r))∼) ∈ blpt⇸BLOCKS	
 @axm6 blpt ∩ ran(fst) = ∅	
 @axm7 blpt ∩ ran(lst) = ∅	!
end	

context train_ctx2_beebook extends train_ctx2 train_ctx1_beebook	
axioms	
 @prob_axm1 blpt = {B,D,F,I,J}	
end	

blpt: blocks with point
lft, rht: possible successors of points

context train_ctx2 extends train_ctx1	!
constants blpt lft rht	!
axioms	
 @axm1 blpt ⊆ BLOCKS // blocks with points: sets of blocks containing points	
 @axm2 lft ∈ blpt & BLOCKS	
 @axm3 rht ∈ blpt & BLOCKS	
 @axm4 lft ∩ rht = ∅	
 @axm5 ∀r·r∈ROUTES ⇒ (lft ∪ rht) ∩ (nxt(r) ∪ (nxt(r))∼) ∈ blpt⇸BLOCKS	
 @axm6 blpt ∩ ran(fst) = ∅	
 @axm7 blpt ∩ ran(lst) = ∅	!
end	

context train_ctx2_beebook extends train_ctx2 train_ctx1_beebook	
axioms	
 @prob_axm1 blpt = {B,D,F,I,J}	
end	

BLOCKS

J

L

lft

I

A

lft

F

lft

D

lft

B lft

blpt: blocks with point
lft, rht: possible successors of points

BLOCKS

J

L

lft

I

A

lft

F

lft

D

lft

B lft

BLOCKS

J

A

rht

I

B

rht

rht

F

rht

D

rht

!
 @axm4 lft ∩ rht = ∅	
 @axm5 ∀r·r∈ROUTES ⇒ (lft ∪ rht) ∩ (nxt(r) ∪ (nxt(r))∼) ∈ blpt⇸BLOCKS

 @axm2 lft ∈ blpt & BLOCKS	
 @axm3 rht ∈ blpt & BLOCKS

Satisfied by empty set
(choose lft/rht such that empty intersection with nxt,nxt~)

First Conclusion
• Model finding/constraint solving + animation useful

in uncovering missing axioms

• axioms were not required in first four levels of
refinement

• but would have been needed at next levels (book
stopped here; no event used lft, rht to move
points !)

Model Checking

• The simple topology from the book certainly cannot
pose any problem, can it ?

• How many states are there for the first refinement ?

TLA+ module '/home/hansen/./Train_1_beebook_v2.tla' created.
Configuration file '/home/hansen/./Train_1_beebook_v2.cfg' created.
...

TLC2 Version 2.05 of 17 April 2013
Running in Model-Checking mode.
...
Starting... (2014-02-05 11:49:29)
Computing initial states...
Finished computing initial states: 1 distinct state generated.
Progress(5) at 2014-02-05 11:49:36: 152 states generated (152 s/min),
 86 distinct states found (86 ds/min), 38 states left on queue.
Progress(19) at 2014-02-05 11:50:36: 17499 states generated (17347 s/min),
 6690 distinct states found (6604 ds/min), 1405 states left on queue.
...
Progress(152) at 2014-02-09 16:24:24: 445222577 states generated (130626 s/min),
 61648071 distinct states found (8268 ds/min), 84 states left on queue.
Model checking completed. No error has been found.
 Estimates of the probability that TLC did not check all reachable states
 because two distinct states had the same fingerprint:
 calculated (optimistic): val = .0013
 based on the actual fingerprints: val = 3.3E-4
445223287 states generated, 61648075 distinct states found, 0 states left on queue.
The depth of the complete state graph search is 152.
Finished. (2014-02-09 16:24:52)

Parsing time: 1484 ms
Translation time: 246 ms
Model checking time: 362123 sec
States analysed: 61648075
Transitions fired: 445223287
Result: NoError

> 100 hours

Model Checking
• The simple topology from the book certainly cannot

pose any problem, can it ?

• First successful model check took 4 days,
generating 61 million states and 445 million
transitions (we used multi core version of TLC; cf
ABZ’14)

Why this blowup ??
Simpler topology: still 
627,777 distinct states

(9 blocks, 5 signals, 3 points)
29+5+3 = 131,072

Variables:
LBT: Last Block of Train
OCC: occupied blocks
TRK: physical layout
frm: formed routes

resbl: reserved blocks
resrt: reserved routes

resrtbl: reserved routes for reserved blocks

Why this blowup ??
Simpler topology: still 
627,777 distinct states

(9 blocks, 5 signals, 3 points)
29+5+3 = 131,072

Variables: (Values)
LBT: Last Block of Train 152

OCC: occupied blocks
TRK: physical layout

frm: formed routes 256
resbl: reserved blocks
resrt: reserved routes

resrtbl: reserved routes for reserved blocks

Why this blowup ??
Simpler topology: still 
627,777 distinct states

(9 blocks, 5 signals, 3 points)
2^(9+5+3) = 131,072

Variables: (Values)
LBT: Last Block of Train 152

OCC: occupied blocks
TRK: physical layout

frm: formed routes 256
resbl: reserved blocks
resrt: reserved routes

resrtbl: reserved routes for reserved blocks

Manual POR change
• Why can all routes be formed at the same time ?

• Because routes are not freed straightaway

• Manual “partial order” reduction: force freeing
routes straightaway

• changes model, but (maybe) we can prove that
this does not hide deadlocks or invariant
violations

Empirical Results
• Parallelisation very useful

• Stronger partial order
reduction could be very
helpful (4 days ↝ 30 minutes)

• Latest version of TLC
translation much faster now*
but parB scales better: parB
on Amazon 32 fastest

• model improvement was
found thanks to ProB’s
coverage features

Worker Inv POR TLC States

6 no yes 40 sec 672,173

6 yes yes 204 sec 672,173

6 no no 52.8 min 61,648,075

6 yes no 305.9 min 61,648,075

* trick to avoid re-evaluation all tests run on 6-core MacPro

with POR, old TLC4B translator:

Graphical Visualization For
Larger Examples

Stuttgart 21 - Capacity Analysis

A more complex example

cf. previous talk

Animation with ProB, replaying Alstom test logs

Related Work
• Prover Technology (RATP): http://www.prover.com/

company/casestudies/ratp/ ; iLock http://www.railway-
technology.com/contractors/signal/prover-technology/

• Kirsten Winter: ISoLA 2012, Symbolic Model Checking

• Kirsten Winter et al. CSP/FDR ACSC’2003, SCS’05

• Ferrari et al. FORMS/FORMAT 2010

• …

http://www.prover.com/company/casestudies/ratp/
http://www.railway-technology.com/contractors/signal/prover-technology/

Conclusions
• Surprising state explosion of interlocking model

• Coverage analysis tools useful to diagnose state space explosion

• reached values for single variable, for all variables (all values or
just minimum and maximum)

• We are still far away from scaling exhaustive model checking to a
realistic interlocking; stronger partial order reduction could help
(papers serves as reference point for other approaches)

• Proof or combination of proof, modelling and model checking

• Animation/constraint solving was useful in finding “unexpected”
behaviour in fully proven model

