

A tool for specifying and validating
software liability

VERIMAG, Grenoble, France
- Eduardo Mazza
- Marie-Laure Potet

Outline

● Context
● Approach
● Study Case
● Specifications

● Entities
● Logs

● Properties
● Responsibility
● Future Work
● Conclusions

3

LISE: Liability Issues in Software
Engineering

● Context
● Multidisciplinary group

– Lawyers and Engineers that search to produce a valid solution for legal
dispute resolutions based on digital evidences

● Liability
– With system more complex is important to know who is responsible

● Example: system that use open-source or third party components

● Digital evidences
– What can be legally used as digital evidence? How to formalize it?

● Contract made between legal parts
– The main object of LISE
– it should contains agreements about liability and digital evidences

4

Specific objective for VERIMAG

● Propose a language for formally describe the liability of legal
parts in contracts

● Formal specification of logs as digital evidences

● Define a log analyzer, to determine the responsibility, based on
the log, when an error occurs

● Approach:

● Use of B to:

– Define contract elements
– Define the log analyzer

● Creation of a tool for verification/validation of liability situations
● The log can never be corrupted – the information registered

corresponds exactly what it happened

5

Approach

6

Study case

● Signature system in mobile

● Examples of problems:
● User alleges that he has never signed any

document
● User alleges that he has signed a document

different from the one in server

7

Approach (use of Event B)

8

B to help define the formal model

● Formal model
● Precise log definition and correct/incorrect behavior
● Validation by animation

● Properties verification
● Log accuracy with behavior
● Responsibility function “completeness”

– Log contain the minimum information to define
responsiblity

9

B for specifying the log analyzer

● Log analyzer: a trusted component for legal
parties
● Formal specification
● Proved properties
● Take as input:

– Claim
– Logs

● Responsibility explanation (analyzer output)
● Who is responsible?
● Why is it responsible?

10

Approach (today)

11

Study case schema

12

Entities

● Entities
● System components (set COMP)

– {Server, App, Card, ...)

● Users (set USER)
– {Costumer, ECC}

● Legal parties (set PARTY)
– {MPP, SAP, ...}

● Model as constants
● Liability function

● liability: ACTOR PARTY
● ACTOR = COMP U USER

13

Logs

● Abstract log:
● Sequence of messages with the order that they were

send/received
● One log for each actor (ACTOR)
● Distributed log model

● OP = {Send, Receive}
● ACTION = {SendDocument, …}
● PARAMETER: represents values transmitted

alog : ACTOR → seq(OP x ACTOR x ACTION x seq(PARAMETER))

14

Log Integrity Properties

● Additional information for log
● AC: ACTOR → ACTION

– What are the possible actions for each actor

● Some properties that can be verified:
● Verifying actions execution:

(Send, sa, ac, pa) alog(ss) (sa, ac) AC∈ ⇒ ∈

(Receive, sa, ac, pa) alog(ss) (ss, ac) AC)∈ ⇒ ∈

● Verifying communication errors
(Receive, sa, ac, pa) alog(ss) (Send, ss, ac, pa) alog(sa)∈ ⇒ ∈

15

Log Functionality Properties

● We can define all possibles logs that specify
the regular system executions for each actor

Correct : (ACTOR x LOG) → BOOL
● Function that takes as input actor and associated

log and gives as output a boolean that indicates if
the log belongs or not to the correct executions

● The correct behaviors are used defining the
responsibility function

16

Log Functionality Properties

● Regular behavior can be stated as abstract log
properties
● “Every time the user receives a document it should

have later a message that says if the user sign or not
the document”
(op, ss, ShowDocument, pa) alog(Display) ∈

 ⇒ (op, ss, SendReponse, pa) alog(User)∈

● “Before send the document to sign the same
document should be seen by the mobile user”
(op, ss, Sign, pa) alog(Card) ∈

 ⇒ (op, ss, ShowDocument, pa) alog(User)∈

17

Claims

● Basis for legal disputes
● How can we represent them using the model and avoiding

ambiguity?
● Terminology

– The plaintiff alleges that suffered damage because of actions (or lack of
actions) by a defendant

● Claim are designed for different situations (using natural
language)
● “User complains that never signed the document” (NotSigned)

 ∃ doc, sig (

(Receive, App, Response, [doc, sig]) alog(Server) ^ ∈

¬((Receive, Display, Show, [doc]) alog(User)∈

)

18

Liability

● Link between elements:
● Log

● Claim

● Parties

● Written in the contract between the parts using natural language
● Formalization using the log properties

● IF Claim = NotSigned THEN

IF NOT Correct(App, alog(App)) THEN
Resp = SAP

ELSE IF NOT Correct(Card, alog(Card)) THEN
Resp = SCP

ELSE IF NOT Correct(Mobile, alog(Mobile)) THEN

Resp = MPP

19

Future work

● Animation for liability situations
● Language to express properties that are easier

to write and read
● Temporal logic elements

● Log completeness for liability verification
● Analyzer specification

20

Conclusions

● How can formal methods be used in legal
disputes

● Attempt to create properties that help to
validate digital evidences (logs)

● What are the kind of properties that can be
used for claims?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

