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LISE: Liability Issues in Software 
Engineering

● Context
● Multidisciplinary group

– Lawyers and Engineers that search to produce a valid solution for legal 
dispute resolutions based on digital evidences

● Liability
– With system more complex is important to know who is responsible

● Example: system that use open-source or third party components

● Digital evidences
– What can be legally used as digital evidence? How to formalize it?

● Contract made between legal parts
– The main object of LISE
– it should contains agreements about liability and digital evidences
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Specific objective for VERIMAG

● Propose a language for formally describe the liability of legal 
parts in contracts

● Formal specification of logs as digital evidences

● Define a log analyzer, to determine the responsibility, based on 
the log, when an error occurs

● Approach:

● Use of B to:

– Define contract elements
– Define the log analyzer

● Creation of a tool for verification/validation of liability situations
● The log can never be corrupted – the information registered 

corresponds exactly what it happened
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Approach
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Study case

● Signature system in mobile

● Examples of problems:
● User alleges that he has never signed any 

document
● User alleges that he has signed a document 

different from the one in server
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Approach (use of Event B)
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B to help define the formal model

● Formal model
● Precise log definition and correct/incorrect behavior
● Validation by animation

● Properties verification
● Log accuracy with behavior
● Responsibility function “completeness”

– Log contain the minimum information to define 
responsiblity
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B for specifying the log analyzer

● Log analyzer: a trusted component for legal 
parties
● Formal specification
● Proved properties
● Take as input:

– Claim
– Logs

● Responsibility explanation (analyzer output)
● Who is responsible?
● Why is it responsible?
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Approach (today)
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Study case schema
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Entities

● Entities
● System components (set COMP)

– {Server, App, Card, ...)

● Users (set USER)
– {Costumer, ECC}

● Legal parties (set PARTY)
– {MPP, SAP, ...}

● Model as constants
● Liability function

● liability: ACTOR        PARTY
● ACTOR = COMP U USER
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Logs

● Abstract log:
● Sequence of messages with the order that they were 

send/received
● One log for each actor (ACTOR)
● Distributed log model

● OP = {Send, Receive}
● ACTION = {SendDocument, …}
● PARAMETER: represents values transmitted

alog : ACTOR → seq(OP x ACTOR x ACTION x seq(PARAMETER))
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Log Integrity Properties

● Additional information for log
● AC: ACTOR → ACTION

– What are the possible actions for each actor

● Some properties that can be verified:
● Verifying actions execution:

(Send, sa, ac, pa)  alog(ss)   (sa, ac)  AC∈ ⇒ ∈

(Receive, sa, ac, pa)  alog(ss)  (ss, ac)  AC)∈ ⇒ ∈

● Verifying communication errors
(Receive, sa, ac, pa)  alog(ss)  (Send, ss, ac, pa)  alog(sa)∈ ⇒ ∈
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Log Functionality Properties

● We can define all possibles logs that specify 
the regular system executions for each actor

Correct : (ACTOR x LOG) → BOOL
● Function that takes as input actor and associated 

log and gives as output a boolean that indicates if 
the log belongs or not to the correct executions

● The correct behaviors are used defining the 
responsibility function
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Log Functionality Properties

● Regular behavior can be stated as abstract log 
properties
● “Every time the user receives a document it should 

have later a message that says if the user sign or not 
the document”
(op, ss, ShowDocument, pa)  alog(Display) ∈

 ⇒ (op, ss, SendReponse, pa)  alog(User)∈

● “Before send the document to sign the same 
document should be seen by the mobile user”
(op, ss, Sign, pa)  alog(Card) ∈

 ⇒ (op, ss, ShowDocument, pa)  alog(User)∈
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Claims

● Basis for legal disputes
● How can we represent them using the model and avoiding 

ambiguity?
● Terminology

– The plaintiff alleges that suffered damage because of actions (or lack of 
actions) by a defendant

● Claim are designed for different situations (using natural 
language)
● “User complains that never signed the document” (NotSigned)

 ∃ doc, sig (

(Receive, App, Response, [doc, sig])  alog(Server) ^ ∈

¬((Receive, Display, Show, [doc])  alog(User)∈

)
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Liability

● Link between elements:
● Log

● Claim

● Parties

● Written in the contract between the parts using natural language
● Formalization using the log properties

● IF Claim = NotSigned THEN

IF NOT Correct(App, alog(App)) THEN
Resp = SAP

ELSE IF NOT Correct(Card, alog(Card)) THEN
Resp = SCP

ELSE IF NOT Correct(Mobile, alog(Mobile)) THEN

Resp = MPP
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Future work

● Animation for liability situations
● Language to express properties that are easier 

to write and read
● Temporal logic elements

● Log completeness for liability verification
● Analyzer specification
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Conclusions

● How can formal methods be used in legal 
disputes

● Attempt to create properties that help to 
validate digital evidences (logs)

● What are the kind of properties that can be 
used for claims?
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