
An extensible rule-based
prover for Event-B

Issam Maamria

Michael Butler

Andrew Edmunds

Abdolbaghi Rezazadeh

July 16th, 2009

Wednesday, 22 July
2009

Issam Maamria 2

Outline

1. Current Architecture

2. Limitations

3. Proposal

4. Q&A

Wednesday, 22 July
2009

Issam Maamria 3

Event-B Tool

Wednesday, 22 July
2009

Issam Maamria 4

Event-B Tool (The Prover)

� What to prove is represented as a
sequent Hyp |- Goal.

� A proof is represented as a tree with
its root as the sequent to prove.

� A proof rule is generated using a rule
schema (a reasoner).

Wednesday, 22 July
2009

Issam Maamria 5

Event-B Tool (The Prover)

� Basic tactics are wrappers around
proof rules to act on proof trees.

� There are tactical tactics.

� Tactical tactics .e.g., apply a tactic on
all pending sub-goals, compose a
number of tactics.

Event-B Tool (The Prover)

� If a new rule is to be added:

� org.eventb.core.seqprover.reasoners

� org.eventb.core.seqprover.autoTactics

� org.eventb.ui.proofTactics

� org.eventb.core.postTactics

� org.eventb.core.pomTactics

The point is you have to write Java code.

Wednesday, 22 July
2009

Issam Maamria 6

The Prover: limitations

� The need for writing Java code.

� Maintain the soundness of the prover
after adding rules:

� Testing

� Verification of Java code

Wednesday, 22 July
2009

Issam Maamria 7

Proposal

� Specify proof rules in a similar
manner to developing models.

� A new construct Theory distinct from
contexts and machines.

� Generate proof obligations to validate
rules.

Wednesday, 22 July
2009

Issam Maamria 8

Wednesday, 22 July
2009

Issam Maamria 9

Proposal

� Reasoners define how they are
applied inside their Java classes.

� Instead, we use a generalised pattern
matching mechanism to check for
applicability.

Proposal

� Theory Development Lifecycle

� Development

� Specify proof rules.

� Validate proof rules.

� Deployment

� Deploy sound theories.

� Use proof rules with the generalised pattern
matching mechanism.

Wednesday, 22 July
2009

Issam Maamria 10

Proposal

� Initially, we will specify rewrite rules.

� Conditional rewrite rules of the form:

� lhs Ξ C1 : rhs1

…

Cn : rhsn

n ≥ 1

Syntactic constraints are handled by the Static Checker.

Wednesday, 22 July
2009

Issam Maamria 11

Proposal

� Unconditional rewrite rules are a
special case of conditional rules.

� Proof obligations are to ensure
soundness as well as well-definedness
preservation.

Wednesday, 22 July
2009

Issam Maamria 12

Proposal

� Conditional rewrite rule PO’s:

� WD(lhs) |- WD(Ci) WD-P

� WD(lhs), Ci |- WD(rhsi) WD-P

� WD(lhs), Ci |- lhs = rhsi or S

� WD(lhs), Ci |- lhs � rhsi S

Wednesday, 22 July
2009

Issam Maamria 13

Proposal

� After deploying a theory, it can be
used.

� Annotations are used for rules to
specify how they should be handled
by the prover (.e.g., automatic rules)

� The pattern matching mechanism will
work out what rule are applicable for
a given sequent and at what
positions.

Wednesday, 22 July
2009

Issam Maamria 14

Proposal

� So far:

� The Theory construct.

� Caters for rewrite rules initially.

� PO’s are generated.

� TODO:

� Specify and implement the pattern
matching

Wednesday, 22 July
2009

Issam Maamria 15

Wednesday, 22 July
2009

Issam Maamria 16

Q&A

� Any questions?

