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Abstract

This document is a proposal for generic instantiation of machines in the Rodin platform. Event-B
[1] is the modelling language that will be used during the description of the procedure. This approach
is based on the Shared Event Compositon (B-style) and Refactory plug-ins. Instantiated Machines
are introduced and used for the developments of generic models instances.

1 Introduction

Generic Instantiation can be seen as a way of reusing components and solve difficulties raised by the
construction of large models [1]. To create several components with similar properties, instead of cre-
ating the components from the scratch, re-usability is applied through the use of a template or pattern
as the basic structure and afterwards each new component is generated through personalisation. This
technique is well-established in areas like mathematics and even in other formal methods like B or
theorem provers like Isabelle.

We propose a generic instantiation approach for Event-B by instantiating machines. The instances
inherit properties (variables, sets, constants) of the generic machine (pattern) and afterwards are
personalised by renaming/replacing those properties to more specific names to the instance. There
is also a generation of proofs obligations to ensure assumptions (axioms) used in the patterns are
satisfied by the instantiation.

Overview Section 2 defines how generic instantiation is interpreted by us. In section 3 instanti-
ated machines are introduced. Section 4 gives an application of instantiation in particular together
with composition. Section 5 discusses an open question that arise when instantiating theorems and
invariants in a pattern. Section 6 describe the related work for generic instantiation. In the end, a
summary is given and conclusions are withdrawn about the proposed implementation in Section 7.
During the presentation a case study modelling a protocol communication is used.
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2 Generic Instantiation

In order to explain our approach for Generic Instantiation we will use a simple case study. A protocol
is modelled between two entities, a source and a target, that communicate through a channel. The
content of the channel (buffer) has a maximum dimension. To send a message it is necessary to add
the content of the message to the channel.

Based on the proposed requirements is possible to create a context to model the channel:

CONTEXT ChannelParameters

SETS

Message

CONSTANTS

max size

AXIOMS

axm1 : max size ∈ N

END

Figure 1: ChannelParameters context

The content of the message is of type Message and has a maximum dimension max size.

At the machine side, a variable channel stores all the messages that are sent/received. The channel
messages have type Message and the number of messages in the buffer is limited. channel is initialised
empty. Messages are added to channel to be sent:

MACHINE Channel

SEES ChannelParameters

VARIABLES

channel

INVARIANTS

inv1 : channel ⊆Message

inv2 : card(channel) ≤ max size

EVENTS

Initialisation
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begin

act1 : channel := ∅
end

Event Send =̂

any

m

where

grd1 : m ∈Message

grd2 : card(channel) < max size

then

act1 : channel := channel ∪ {m}
end

Event Receive =̂

any

m

where

grd1 : m ∈ channel

then

skip

end

END

Elements in ChannelParameters context serve as parameters ( types and constant) for the Channel
machine.

Now suppose we wish to model a bi-directional communication between two entities using two channels.
Both channels are similar so an option is to instantiate machine Channel twice to create two instances:
one channel called Request and the other Response. This model separates the entity that sends the
message (Source) and the entity that receives the message (Target) as represented in Figure 2.

Figure 2: Protocol diagram



The instantiation of Channel is achieved by applying machine instantiation. An instance of the pattern
Channel is created with more specific properties. A detailed description of the machine instantiation is
described in the Section 3. Moreover, a context containing the specific instances properties is required
to model the protocol. In our case study we use the context ProtocolTypes, where types Request
and Response replace the more generic type Message and constants qmax size and pmax size replace
max size. The context ProtocolTypes can be seen in Figure 3.

CONTEXT ProtocolTypes

SETS

Request

Response

CONSTANTS

qmax size

pmax size

AXIOMS

axm1 : qmax size ∈ N
axm2 : pmax size ∈ N

END

Figure 3: ProtocolTypes Context

3 Generic Instantiation and Instantiated Machines

Inspired by the previous case study, having the ability to compose machines (Shared Event Com-
position plug-in) and renaming elements in the Rodin platform (Refactory plug-in), we propose an
approach to instantiate machines. As mentioned the context plays an important role while instanti-
ating since is where the specific properties of the instance are defined. The use of context is briefly
discussed before instantiated machines are introduced.

3.1 Contexts

Contexts in Event-B are the static part of a model. Contexts store information that does not change
during the development of specifications and contain properties of the modelled system through the
use of axioms and theorems. Furthermore, having a closer look at the possible usages of contexts,
there are two possible viewpoints:
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Parameterisation the context is seen only by one machine and defines specific properties for that
machine (sets, constants, axioms, theorems). These properties are unique for that machine and
any other machine would have different properties.

Sharing a context is seen by several machines and there are some properties (sets, constants, axioms,
theorems) that are shared by the machines. Therefore the context is used to share properties.

In several model developments there exist a mixture of both usages for the same context. For the
general model developers this distinction is not very clear and perhaps not so important. For our
approach of generic instantiation is important to distinguish since to reuse components and personalise
each instance Parameterisation is used.

3.2 Example of INSTANTIATED MACHINE

An INSTANTIATED MACHINE instantiates a generic machine (pattern). It is characterised by a
name, by which machine is used as generic and by which variables and events are renamed. If the
generic machines sees a context, then the context elements (sets and constants) have to be replaced
by instance elements. The instance elements must exist already in a context seen by the instantiated
machine (in our case study, this corresponds to ProtocolTypes - see Figure 3).

Returning to the case study, the instantiated machine QChannel that is an instance of the machine
Channel for requests looks like this:

INSTANTIATED MACHINE QChannel
INSTANTIATES Channel BY ChannelParameter
SEES ProtocolTypes /* context containing the instance properties */
REPLACE /* replace parameters defined in ChannelParameters */

SETS Message := Request
CONSTANTS max size := qmax size

RENAME /* rename variables and events at Channel machine */
VARIABLES channel := qchannel
EVENTS Send := QSend

END

Figure 4: Instantiated Machine: QChannel instantiates Channel

Note that context elements (sets and constants) are replaced because the replacement elements are
already defined in ProtocolTypes. Machine elements (variables, parameters and events) are renamed
instead since they do not exist before. The instantiated machine PChannel that is an instance of
Channel for responses is similar.

Axioms in contexts are assumptions about sets and constants used in proofs of machines. When
instantiating, we need to show that these assumptions are satisfied by the replacement sets and
constants. As a result, axioms in the context are converted into theorems in the instantiated machine
after the replacement is applied. A theorem has a proof obligation associated. By assuring that a proof
obligation related to each axiom is generated and discharged, we are confirming the correctness of the
instantiation because the assumptions in the pattern are satisfied. “Expanding” machine QChannel
can be seen in Figure 5:
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MACHINE QChannel

SEES ProtocolTypes

VARIABLES

qchannel

INVARIANTS

inv1 : qchannel ⊆ Request

inv2 : card(qchannel) ≤ qmax size

THEOREMS

thm1 : qmax size ∈ N
thm2 : pmax size ∈ N

EVENTS

Initialisation

begin

act1 : qchannel := ∅
end

Event QSend =̂

any

q

where

grd1 : q ∈ Request

grd2 : card(qchannel) < qmax size

then

act1 : qchannel := qchannel ∪ {q}
end

Event Receive =̂

any

q

where

grd1 : q ∈ qchannel

then

skip

end

END
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Figure 5: Expanded version of instantiated machine QChannel

QChannel sees the context ProtocolTypes that contains the context information for the instances, the
type Message in context ChannelParameters was replaced by Request in ProtocolTypes, the constant
max size was replaced by qmax size, the variable channel in Channel was renamed to qchannel and
event Send was renamed to QSend. The axiom that exists in ChannelParameter was converted to
a theorem in machine QChannel (but easily discharged by the axioms in ProtocolTypes). Note that
the expansion is not required in practice. We use it to show the meaning of an INSTANTIATED
MACHINE.

3.3 Definition of Generic Instantiation of Machines

Owing to the example above, a general definition of generic instantiation in machines can be drawn.
If we have a context C and a machine M defined as follows:

CONTEXT C
SETS S1...Sm

CONSTANTS C1...Cn

AXIOMS Ax1...Axp

(a) Context C

MACHINE M
SEES C
VARIABLES v1...vq

EVENTS ev1...evr

(b) Machine M

Figure 6: Generic view of a context and a machine

Based on context C and machine M that together can be seen as a pattern, we can create an Instan-
tiatiated Machine IM as follows:

INSTANTIATED MACHINE IM
INSTANTIATES M BY C
SEES D /* context containing the instance properties */
REPLACE /* replace parameters defined in context C */

SETS S1 := DS1, . . . , Sm := DSm

CONSTANTS C1 := DC1, . . . , Cn := DCn

RENAME /* rename variables and events at machine M */
VARIABLES v1 := nv1, . . . , vq := nvq

EVENTS ev1 := nev1, . . . , evr := nevr /* optional */
END

Figure 7: An Instantiated Machine

The context D contains the replacement parameters (sets DS1, . . . , DSm and constants DC1, . . . , DCn)
for the elements in context C. The variables and events are also renamed by variables nv1, . . . , nvq

and events nev1, . . . , nevr. From the pattern we are able to create several instances that can be used
in a more specific problem. During the creation of instances validity checks are required:
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1. A static validation of replaced elements is required, e.g., must replace a type with a type (or a
constant set), a constant with a constant.

2. All sets and constants should be replaced, i.e., no uninstantiated parameters.

3. A static check must be done to assure that the instantiated machine specifies which generic
context is being instantiated.

4. All variables should be renamed to avoid uninstantiated parameters. The same applies for
variable occurrences.

5. Renaming events or replacing event parameters by an expression (optional).

4 Example of Instantiation and Composition

After the creation of the instances the system modelling carries on. In our case study, we model
a protocol between entities that sends and receives messages to each other. By using the created
instances and the Shared Event Composition plug-in we share events between Request and Response
and model the protocol. A composed machine Protocol modelling this system can be seen in Figure
8:

COMPOSED MACHINE Protocol
INCLUDES

PChannel
QChannel

EVENTS
SendRequest

Combines Events QChannel.QSend
RecvReq SendResp

Combines Events QChannel.Receive ‖ PChannel.Send
RecvResp

Combines Events combines PChannel.Receive
END

Figure 8: Composed Machine Protocol

Like seen in Figure 2, while composing the instance machines PChannel and QChannel we add the
events that are unique for each entity (SendRequest and RecvResp). SendRequest sends a message
through the channel from the Source to Target. RecvResp models the reception of the response in the
Source after being sent by the Target. Moreover the event that relates the communication between
the two entities is also modelled (RecvReq SendResp). While the request is received, the response
to that request is also sent in parallel. (From this combined event, a possible refinement could be
processing the request message before sending the response.)

The composed machine Protocol corresponds to the following expanded machine:

MACHINE Protocol
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SEES ProtocolTypes

VARIABLES

qchannel

pchannel

INVARIANTS

inv1 : qchannel ⊆ Request

inv2 : pchannel ⊆ Response

inv3 : card(pchannel) ≤ pmax size

inv4 : card(qchannel) ≤ qmax size

THEOREMS

QChannel/thm1 : qmax size ∈ N
QChannel/thm2 : pmax size ∈ N
PChannel/thm1 : qmax size ∈ N
PChannel/thm2 : pmax size ∈ N

EVENTS

Initialisation

begin

act1 : qchannel := ∅
act2 : pchannel := ∅

end

Event SendRequest =̂

any

q

where

grd1 : q ∈ Request

grd2 : card(qchannel) < qmax size

then

act1 : qchannel := qchannel ∪ {q}
end

Event RecvReq SendResp =̂

any

q

p

where

grd1 : q ∈ qchannel

grd2 : p ∈ Response
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grd3 : card(pchannel) < pmax size

then

act1 : pchannel := pchannel ∪ {p}
end

Event RecvResp =̂

any

p

where

grd1 : p ∈ pchannel

then

skip

end

END

By creating two instance machines Channel, it was possible to model a bi-directional communication
channel between two entities (see figure 2). Notwithstanding a simple case study, it allows us to
express the applicability of generic instantiation for modelling distributed systems but not necessarily
restricted to this kind of system. When modelling a finite number of similar components with some
specific individual properties, instantiated machines are a suitable option.

5 Instantiating Theorems and Invariants

Theorems in contexts and machines are assertions about characteristics and properties of the system.
Theorems have proof obligations associated that are discharged based on the model assumptions. Once
the theorems are discharged, they can be used as hypothesis for discharging other proof obligations
in the model since they work as a consequence of the assumptions (axioms and invariants). On the
other hand, invariants in machines are assumptions about the model that need be respected in all
states of the system.

An interesting question arise when a pattern is instantiated and contains theorems and invariants.
Having the theorem proof obligation discharged, by creating an instance we would not want to re-prove
the theorem proof. Regarding the invariants and respective proof obligations we would have a similar
situation where we would not want to discharge proof obligations in the instance if they were already
discharged in the pattern. Ideally we would like to add to the instance the assumptions and assertions
given by the theorems and invariants without the hassle of re-proving them. Although addressed
here as an open question, this situation suggest a kind of different theorem, a proved-theorem to be
used in the instance. A proved-theorem would be similar to a theorem but it would not have a proof
obligation associated. The invariants imported from the pattern would fall under the same category
where the respective proof obligations should not be re-generated. Informally the instances are just
renaming and replacing elements without changing the semantics under the original pattern (if the
validity checks are followed) so theorems and invariants would work as assumptions in the instantiated
machine. The assumptions in the pattern (axioms) need to be satisfied by the instances though the
generation of proof obligations but the same does not apply for invariants and theorems that are
assertions of the pattern.



Proposal for Generic Instantiation of Machines in the Rodin Platform 11

6 Related Work

Initially our approach aimed to instantiate both machines and contexts and deal with the instantiation
of each independently. But we realise that our current approach does not instantiate a context.
Instead re-uses a component that already exists. Therefore the context parameterisation is done in
the instantiated machine. Despite that, we believe that further study is required to figure out if
context instantiation is a worthwhile approach while modelling.

[2] makes use of generic instantiation using Event-B. The personalization of the components is de-
scribed as parameterisation of machines in order to reuse refinements. If a development consists in
refinements of machines and respective contexts using the same list of sets s and constants c (figure
9(a)), this development is said to be generic with regard to these carrier sets and constants. A con-
tinuation of a development could simply reuse a first development with some slight changes consisting
of instantiating sets s and constants c. Assuming that sets s are independent of each other is proved
that is possible to replace all the contexts by a generic context D with sets t and constant d, as long
as the machines are instantiated with the most recent elements (t and d), thus implicitly seeing D
(figure 9(b)). The existing context D instantiates the respective context (C1 to Cn) of each refined
machines (M1 to Mn). Afterwards the development could be resumed from Mn(t,d). To reuse also
the proofs in M1...Mn and C1...Cn without actually redoing it, the axioms related with sets s and
constant c become theorems after the instantiation.
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Mn Cn

M1 C1
sees

refines

refines  

sees
N Dextends

extends

Figure 10. A Generic Development Together with Another Ongoing Development

ple. We put together all the variables of the individual components (“de-replicating” the various shared variables)

and throw away all the external events of each component.

It remains for us to prove that the re-composed machine is indeed a refinement of the initial machine. Notice

again that this recomposition is usually not done explicitly. It is just something that could be done, and which must

then yield a refinement of the initial machine. The conditions for a correct recomposition are extremely simple

although the proof (given in the Appendix) is more complicated: each of the decomposed sub-machines must

be refined by the original machine (which is achieved by the additional proof obligation DCMP in Section 6.4).

The proof also explains why the stated conditions are indispensable for establishing that the recomposed machine

indeed refines the original machine. Recomposition is illustrated in Fig. 9.

6.6. Refinement of External Variables

One problem of the decomposition method as presented above is that it enforces the use of implementation-level

data types too early in the development: we would like to decompose at an early development stage but without

being forced to use concrete types. With the techniques already introduced we continue decomposing in order

to introduce new external variables (of more concrete type). These external variables are part of the design and

remain as interfaces between the components created by decomposition in the implementation.

Another possibility to avoid the introduction of implementation-level external variables too early is to refine

external variables. Wemention this here without giving details because the principle of decomposition is untouched

but the proofs are more intricate and longer. These can be found in [3] together with a corresponding correctness

proof for decomposition taking refinement of external variables into account.

7. Generic Instantiation

Generic instantiation is our third proposal for solving the difficulties raised by the construction of large machines.

Suppose we have done an abstract development with machines M1 to Mn and corresponding contexts C1 to Cn

as shown in the left hand part of Fig. 10. This development is in fact parameterized by the carrier sets s and the
constants c that have been accumulated in contexts C1 to Cn. This development is said to be generic with regard
to these carrier sets and constants. Remember that these sets are completely independent of each other and their

only property is that they are not empty. The constants are defined by means of some axioms P (s, c), which stands
here for all axioms accumulated in contexts C1 to Cn. In fact, in all our proof obligations of this development, s
and c appear free. Moreover, the constants axioms P (s, c) appear as assumptions in all statements to be proved,
which are thus of the following form as can be seen in proof obligations INV (Section 4.5), REF1 (Section 5.2),

REF2, REF3, and REF4 (Section 5.3):

(a) Refinement chain and respective contexts
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N

refines

D
sees

sees

sees

refines

refines

M1(t,d)

Mn(t,d)

extends

Figure 11. Generic Instantiation

P (s, c) ∧ A(s, c, . . .) ⇒ B(s, c, . . .)

Suppose now that in another development, we reach a situation with machine N seeing a certain context D

(after some machine and context refinements), as shown on the right hand part of figure 10. The accumulated sets

and constants in context D are denoted by t and d respectively. And the accumulated axioms in context D are

denoted by Q(t, d).
We might figure out at this point that a nice continuation of the second development would simply consist

in reusing the first development with some slight changes consisting of instantiating sets s and constants c of the
former with expressions S(t, d) and C(t, d) depending on sets and constants t and d of the latter.

Let M1(t, d), . . .Mn(t, d) be the machines of the first development after performing the instantiations on the
various invariants which can be found in M1 to Mn. The effective reuse is that shown in Figure 11. As can be
seen, instantiated machines M1(t, d), . . .Mn(t, d) implicitly “see” context D. It remains of course to prove now
that machineM1(t, d) refines machineN. Once this is successfully done, we would like to resume the development
afterMn(t, d). For doing so, is then necessary to prove that all refinement proofs performed in the first development
are still valid after the instantiation. In order to be able to reuse the proofs of the first development without redoing

them, it is just necessary to prove that the sets and constants axioms P (s, c) of the first development are mere
theorems after the instantiation. This corresponds to the following statement to prove:

Q(t, d) ⇒ P (S(t, d), C(t, d)) INS

The explanation is very simple. Remember that all statements proved in the former development where of the

following form:

P (s, c) ∧ A(s, c, . . .) ⇒ B(s, c, . . .)

As a consequence, the following holds since s and c are free variables in this statement:

(b) Generic Instantiation: Reuse of context D

Figure 9: Generic Instantiation according to [2]

This approach applies the instantiation at the context level which is different from our approach that
applies the instantiation at the machine level. The use of generic instantiation is applied to a chain
of refinements and we apply to a single machine. Since generic instantiation is a very general concept
will believe that are different possible approaches for reusing components and this two options are
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just in a list of more possibilities. Further study is required for instantiating context in a similar way
that we do for instantiated machines and if it worths to be explored. By identifying suitable scenarios
where reuse benefits the model, more generic instantiation approaches will arise.

7 Conclusions

This documents proposes an implementation of generic instantiation applied to the Rodin platform
using Event-B notation. The motivation for such implementation is related with reusability of compo-
nents and models that already exist. By creating an instance from a generic model, a new personalised
model is created based on a generic model and on new specific properties. Generic instantiation is
applied to instantiated machines and respective parameterisation contexts. An instantiated machine
instantiates a generic machine, parameterise a context and rename/replace the necessary elements to
adjust to the new instances. A practical case that models a communication protocol between two
entities is presented to show the advantages of using generic instantiation and in particular how to use
our approach in the Rodin platform1. These document outlines only a proposal for the instantiation
of machine. Some methodological points arise for a possible implementation like what to do with
theorems and invariants in the instances and they are left as open questions. A comparation is made
between a generic instantiation applied to a refinement chain and our approach, applied to individual
machines.
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