
Sequence Refinement

A. Iliasov

August 6, 2010

According to the Event B refinement laws, new behaviour is introduced by
adding new events to a refinement machine. Such new behaviour may corre-
spond to a detalised description of some abstract behaviour especially when a
previously atomic state transition has to be explained as a chain of state transi-
tions. To satisfy the refinement relation, new events are only allowed to update
new variables. New variables of a machine denote the part of a system state
that is not mapped into the state of the abstract system, that is, they charac-
terise a hidden state of a refined system. Since new events cannot be directly
related to the abstract behaviour it is necessary to have a housekeeping event
that would link the behaviour expressed on the hidden state with the refined
abstract behaviour. Technically, the housekeeping event is a refinement of some
abstract event. Such housekeeping event is discarded during the transition to
an executable program source. The need to introduce auxiliary variables to con-
nect housekeeping events with new events if an additional inconvenience since
one would have to take care to ignore them in the subsequent refinements and
disregard when building a runnable program.

We propose to consider an alternative set of refinement laws where an ab-
stract state transition may be directly refined into a chain of new transitions.
In other words, a refinement relation relating an abstract event and new events
without the need for a housekeeping event and auxiliary variables. We not look-
ing to replace or remove any of the existing refinement laws but rather augment
them with a new set of laws.

The approach is best demonstrated by a simple example. The abstract model
specifies single event swap that swaps the values of two variables.

machine m
variables a, b
invariant a ∈ N ∧ b ∈ N
initialisation a :∈ N ‖ b :∈ N
events

swap = begin a, b := b, a end
end

In the refinement we want to eliminate the case of assigning to two vari-
ables at the same time (e.g., the target architecture does not support such an
operation). Instead, the swap is modelled using the addition and subtraction
operations. The general idea is to introduce a pair of new variables, realise the
swap algorithm on these variables, and then use the refinement of event swap
in the role of a housekeeping event to prove the refinement relation. A refined
model takes the following form.

1



refinement m1a
refines m
variables a, b, x, y, pc
invariant

x ∈ N ∧ y ∈ N ∧ pc ∈ 0 . . . 3
pc = 0 =⇒ x = a ∧ y = b
pc = 1 =⇒ x = a + b ∧ y = b
pc = 2 =⇒ x = a + b ∧ y = b
pc = 3 =⇒ x = b ∧ y = a

initialisation
a, x :| a′ ∈ N ∧ x′ = a′
b, y :| b′ ∈ N ∧ y′ = b′
pc := 0

events
step1 = when pc = 0 then x := x + y ‖ pc := 1 end
step2 = when pc = 1 then y := x− y ‖ pc := 2 end
step3 = when pc = 2 then x := x− y ‖ pc := 3 end
swap = when pc = 3 then a, b := x, y ‖ pc := 0 end

end

The pc = . . . invariants are necessary to propagate the information on state
evolution through the steps of the algorithm. Without these, it would be im-
possible to prove the action refinement of swap.

Let us consider an alternative refinement model where there no auxiliary
variables and no housekeeping event.

refinement m1b
refines m
variables a, b
invariant a ∈ N ∧ b ∈ N
initialisation a :∈ N ‖ b :∈ N
events

swap1 = begin a := a + b end
swap2 = begin b := a− b end
swap3 = begin a := a− b end

end

Not shown above but present in the model is the information on the refine-
ment relationship among the swap and swap, and the restriction of the possible
traces of swap events. The latter is necessary as the refinement relationship
holds only when swap1 is followed by swap2 and the by swap3. The traces
restriction information is not encoded in the state of the model (that is, by
auxiliary variables) but rather taken into the account when generating proof
obligations.

Due to space constraints we are unable to give further details on the proof
obligations and how and why they are compatible with the existing set of refine-
ment laws. However, a beta version of the plugin is available for those interested
to learn more about this work [1].

References

[1] “Sequence refinement plugin update site,” http://iliasov.org/refplugin/.

2


