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ProB [3] is an animator and model checker for the B-method, supporting
classical B as well as Event-B. In order to be able to animate B models, ProB
has to find solutions for various predicates expressed in predicate logic, set theory
and arithmetic:

– finding solutions for the parameters of events, which make the guard of the
event become true,

– finding solutions for constants within contexts, which satisfy the axioms,
– and generally within formulas, determining whether solutions for existen-

tially quantified variables exist.

In recent work, the kernel of ProB has been improved [4], proving more
fine grained constraint propagation. In this paper, we study to what extent
classical constraint satisfaction problems can be conveniently expressed as B
predicates, and then solved by ProB. We study problems such as the n-Queens
problem, graph colouring, graph isomorphism detection, time tabling, Sudoku,
Hanoi, magic squares, Alphametic puzzles, and several more. We also compare
the performance with respect to other tools, such as the model checker TLC [5]
for TLA+ [2], AnimB for Event-B, and Alloy [1].

The experiments show that some constraint satisfaction problems can be
expressed very conveniently in B and solved very effectively with ProB. Some
problems, such as Hanoi, can also be more easily expressed and solved as a model
checking problem (rather than as finding solutions to predicates). For some oth-
ers, the performance of ProB is still sub-optimal with respect to, e.g., Alloy,
and we will describe how we plan to overcome this shortcoming in the future.
Our long term goal is that B can not only be used to as a formal method for de-
veloping safety critical software, but also as a high-level constraint programming
language.

N-Queens

Due to space constraints, we only describe one experiment in this abstract: the
well-known n-Queens puzzle1. It can be expressed very succinctly by specifying
a constant q, which has to satisfy the following axioms:

1 http://en.wikipedia.org/wiki/Eight queens puzzle



q : 1..n �� 1..n ∧

∀(i, j).(i : 1..n ∧ j : 2..n ∧ j > i⇒ q(i) + j − i 6= q(j) ∧ q(i)− j + i 6= q(j))

Experimental results for finding the first solution to this predicate with ProB
can be found in Table 1. ProB can deal with this problem quite effectively,
solving the predicate for up to n = 17 in less than 0.1 seconds each on a MacBook
Pro 3.06 GHz Core2 Duo. For n = 70 the problem is solved in about 9 seconds.

The animator AnimB can solve this predicate only for n = 5. (AnimB cannot
solve it for n = 4; nor can it determine that there are no solutions for n = 3.)

We can translate the above B predicate into TLA+ [2] quite easily (cf. Ap-
pendix B.1). Note that, as far as we know, TLA+ does not provide a built-in way
to declare q′ to be an injection; we have therefore to add an additional inequality
inside the universally quantified expression. The model checker TLC (version 3.5
of the TLA Toolbox) [5] can solve this predicate for n up to 6 quickly, but al-
ready takes 4 minutes and 3 seconds for n = 8. For n = 9, TLC took over 1 hour
and 45 minutes, i.e., more than 5 orders of magnitude slower than ProB(0.02
seconds). Note that we are only testing TLC’s capability to solve predicates, not
its (very effective) disk-based model checking capabilities.

The reason for this big performance difference is that TLC deals with con-
juncts from left-to-right (see page 239 of [2]). As such, TLC enumerates all pos-
sible total functions from 1..n to 1..n, then checking each one of them whether it
satisfies the universally quantified formula. (Note: One cannot change the order
of the conjuncts above, otherwise TLC complains that q is undefined.)

We have also experimented with Alloy [1] (version 4.1.10), which translates
predicates to propositional logic formulas fed to a SAT solver. Solving the equiva-
lent Alloy model (cf. Appendix B.3) for n = 8 takes 0.80 seconds with the default
SAT4J sat solver. With minisat rather than SAT4J as backend, Alloy takes 0.24
seconds. In both cases, this is considerably faster than TLC. However, as Table 1
shows, ProB is still considerably more efficient for this task (in the presenta-
tion we will also discuss other constraint satisfaction problems where Alloy is
considerably more efficient).

Finally, we have also adapted the TLC model so that the solution can be
found by model checking. In other words, we have added an event which places
the next queen on a row such that it attacks none of the already placed queens.
This is a more low level model; for example, it encodes in which order the queens
are placed (namely from left to right). As you can see in Table 1, this is more
efficient that the high-level TLC solution, but still takes more than 45 minutes
for 14 queens.
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A N-Queens Table

B N-Queens Models

B.1 TLA+ high-level model

---- MODULE queens ----

EXTENDS Naturals, FiniteSets

VARIABLE q, n, solved

----

Init == /\ q=[i \in 1..2 |-> 0]

/\ n=8

/\ solved = 0

Solve == /\ solved=0

/\ q’ \in [1..n -> 1..n]

/\ \A i \in 1..n : (\A j \in 2..n : i<j =>

q’[i] # q’[j] /\ q’[i]+i-j # q’[j] /\ q’[i]-i+j # q’[j])

/\ solved’=1

Spec == Init /\ [] [Solve]_<<n,q>>

=======

B.2 TLA+ lower-level model for model checking

---- MODULE queensMC ----

EXTENDS Naturals, FiniteSets

VARIABLE q, n, cur, pos

----

Init == /\ q=[i \in 1..14 |-> 0]

/\ n=14

/\ cur=1

/\ pos=0
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n TLC Alloy Sat4J Alloy Minisat ProB 1.3.2 TLC MC

6 1 0.224 0.133 0.005 1
7 10 0.56 0.194 0.01 1
8 243 0.80 0.241 0.01 1
9 8747 0.69 0.406 0.02 3
10 1.01 0.44 0.02 2
11 2.05 0.54 0.03 13
12 4.20 0.72 0.04 75
13 5.10 0.85 0.06 498
14 5.48 1.15 0.05 2737
15 9.84 2.08 0.06
16 21.74 3.61 0.06
17 48.45 4.62 0.08
18 43.56 7.58 0.10
19 80.38 14.70 0.11
20 100.87 16.03 0.13
21 127.20 21.36 0.15
22 139.94 24.84 0.17
23 238.36 27.09 0.20
24 254.56 31.50 0.22
25 284.82 32.23 0.26
26 332.35 56.13 0.29
27 439.77 52.02 0.30
28 458.32 81.49 0.34
29 600.50 91.61 0.38
30 775.44 87.28 0.43
31 905.08 161.94 0.47
32 1925.09 245.55 0.52

40 454.22 1.08
50 3.25
60 5.63
70 9.09
100 80.41

Fig. 1. Time to find first solution for N-Queens
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Step == /\ cur<=n

/\ pos’ \in 1..n

/\ cur’=cur+1

/\ q’ = [q EXCEPT ![cur] = pos’]

/\ n’=n

/\ \A i \in 1..(cur-1) : q[i] # pos’ /\ q’[i]+i-cur # pos’ /\ q’[i]-i+cur # pos’

GINV == cur<=n

Spec == Init /\ [] [Step]_<<n,q,cur,pos>>

=======

B.3 Alloy model

Note that the Alloy model uses the built-in Int type with a bit width of 5 for n
up to 15, a bit width of 6 for n > 15 and n < 32, etc.

sig Queens {

row : Int,

col: Int

} {

row >= 0 and row < #Queens

and col >= 0 and col < #Queens

}

pred nothreat(q1,q2 : Queens) {

q1.row != q2.row

and q1.col != q2.col

and q1.row+q2.col-q1.col != q2.row

and q1.row-q2.col+q1.col != q2.row

}

pred valid { all q1,q2 : Queens |

q1 != q2 => nothreat[q1, q2]

}

fact card {#Queens = 8}

run valid for 8 Queens, 5 int
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