
Decomposition Tool: Development and Usage

Renato Silva1, Carine Pascal2, T.S. Hoang3, and Michael Butler1

1 University of Southampton
2 Systerel

3 ETH Zurich
{ras07r,mjb}@ecs.soton.ac.uk

carine.pascal@systerel.fr

htson@inf.ethz.ch

Abstract. Decomposition of a formal development (in particular for
Event-B models) allows the simplification and separation of logics in
the initial abstract model. Specific parts of an abstract model can be
partitioned and independently refined through the introduction of in-
dividual details without the “interference noise” of other non relevant
sub-components.
For instance, while developing a metro system and respective safety mea-
sures, one can start the abstract model by introducing the sections of the
tracks, the trains and respective carriages and a communication module
that interchanges messages between the train and sections of the track.
This is an abstract, coarse grain view of the entire model which is use-
ful in a top-down development. But in order to introduce more specific
details about each sub-component, we would like to isolate them while
maintaining the original properties. The abstract model can be decom-
posed into sub-components like tracks, trains and communication and
refine individually each one of them. Moreover, an advantage of follow-
ing this modelling methodology is that the sub-components can be de-
veloped in parallel which allows team development. Consequently, trains
can be further refined with the introduction of doors in each carriage,
the definition of the conditions for opening/closing the doors and defini-
tion of emergency procedures (what happens when an emergency occurs
while train is in a platform or in the middle of the track or the train is
moving). In parallel, the communication model can be further specified
with the introduction of a protocol for sending/receiving messages and
other details.
The decomposition tool was developed to answer the previous challenge,
allowing the separation of a development (abstract machine or one of
the concrete machines in a refinement chain) into sub-components. The
separation can be done by following either a shared variable or shared
event approach. In the first approach, the user distributes the original
events into sub-components. Consequently these sub-components share
some original (shared) variables. Moreover (additional) external events
are created to model the effect of the other sub-component on the shared
variables [1]. In the second approach, variables are distributed among
the sub-components according to the user’s choice and as a result, sub-
components share some events which are partitions of the original ones.



2 R. Silva, C. Pascal, T.S. Hoang, M. Butler

The first approach is suitable for development of parallel programs [2]
while the second is more suitable for the development of distributed sys-
tems [3]. Both approaches are monotonic [4]: sub-components can be
further refined (and eventually decomposed again) while maintaining
the properties of the original non-decomposed component. An advan-
tage of decomposition is the distribution of the proof obligations among
the sub-components. Although it should be possible to continue the sub-
component refinements in the original development, non-relevant sub-
components interfere in a negative way when discharging the proof obli-
gations, in particular for large developments. For a large model, the as-
sociated proof obligations for proving its correctness are usually polluted
by irrelevant details, which makes the reasoning about the model consis-
tency more difficult. Decomposition helps alleviate this issue by separat-
ing the relevant from non-relevant details into different sub-components.
Here we present an overview of how the tool was developed as a plug-
in for the rodin platform [5] and the changes and additions that were
required to make this plug-in more robust and user friendly. We also
illustrate the usage of the decomposition tool in a case study through a
demo.
A challenge for the future is how to integrate the decomposition tool
with other plug-ins. At the moment, only the standard Event-B elements
are decomposed but ideally additional elements introduced by external
plug-ins (like records) could/should also be decomposed. We need to
find a solution that allows the external plug-ins to define how to decom-
pose additional elements in the Event-B models. It seems that adding
a decomposition extension-point to be implemented by plug-ins that re-
quire decomposition is a possible solution although the content of this
extension-point is still vague at the moment. Further study is required
and we shall explore it in the future.

Key words: decomposition, Event-B, specification, formal methods

References

1. Abrial, J.R.: Event Model Decomposition. Technical report, ETH Zurich (2009
(Unpublished))

2. Hoang, T., Abrial, J.R.: Event-B Decomposition for Parallel Programs. Abstract
State Machines, Alloy, B and Z (2010) 319–333

3. Butler, M.: An Approach to the Design of Distributed Systems with B AMN. In:
Proc. 10th Int. Conf. of Z Users: The Z Formal Specification Notation (ZUM), LNCS
1212. (1997) 221–241

4. Silva, R., Pascal, C., Hoang, T.S., Butler, M.: Decomposition Tool for Event-B. In:
Workshop on Tool Building in Formal Methods - ABZ Conference, Orford, Quebec,
Canada (February 2009)

5. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
An Open Toolset for Modelling and Reasoning in Event-B. International Journal
on Software Tools for Technology Transfer (STTT) (April 2010)


