Modelling Recursion in Event-B

Stefan Hallerstede
University of Diisseldorf, Germany

We present a method for modelling recursion using Event-B [1]|. The central con-
cepts of an Event-B model are machines, events and invariants: Events change
the state of a machine “preserving the invariants”, where the latter statement has
to be proved. This simple approach has been shown to be suitable for a range of
modelling problems from sequential programs to distributed systems.

We find that when modelling more complex sequential programs, we state
invariants in a particular form:

pc = pos = “Property-at-position pos”, (1)

where pc is an abstract program counter and pos a position in the program text.
This means we adopt an assertion-style approach to modelling [3] for sequen-
tial programs . We can lift Event-B refinement to assertion-style modelling with
the central concepts of machines, events and assertions. This permits us to use
Event-B for proving properties about such models using the simple correspon-
dence (1).

In assertion-style Event-B we specify programs as relations on program vari-
ables v in the form of a proof outline, e.g.,

P—e—Q, (2)

where P and @Q are assertions and e is an event. The outline (2) states that
starting from assertion P event e establishes assertion (). The resulting approach
of program development resembles that of traditional program verification [2].
In this approach, we refer to a proof outline as a machine.

Recursion can now simply be modelled by instantiating a machine, say, M
in some refinement of M. The resulting approach mixes ideas of the refinement
calculus [4] and program verification. In the talk we present some examples and
discuss some methodical issues.

References

1. Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

2. K. R. Apt, , F. S. de Boer, and E.-R. Olderog. Verification of Sequential and
Concurrent Programs. Graduate Texts in Computer Science. Springer, 3rd edition,
2009.

3. L. Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, 2002.

4. Carroll C. Morgan. Programming from Specifications: Second Edition. Prentice Hall,
1994.



