Specification of an Automatic Prover (P3)

J.R. Abrial*, D. CansellT, Ch. Métayer*

*jrabrial AT neuf.fr
Tdominique.cansel AT loria.fr
tchristophe.metayer AT systerel.fr

Why it is an Interesting Subject

- In the literature, one can see specifications for:
- programming languages
- compilers
- operating systems (rarely)
- protocols

- safety critical systems

- One never sees specifications for provers

- The proposed specification is made by successive refinements

A Series of Embedded Provers (1)

A Series of Embedded Provers (1)

- a propositional calculus prover

A Series of Embedded Provers (1)

- a propositional calculus prover

- a first order predicate calculus prover

A Series of Embedded Provers (1)

- a propositional calculus prover

- a first order predicate calculus prover

- an equality prover

A Series of Embedded Provers (1)

- a propositional calculus prover

- a first order predicate calculus prover

- an equality prover

- a set theory prover

A Series of Embedded Provers (1)

- a propositional calculus prover

- a first order predicate calculus prover

- an equality prover

- a set theory prover

- an arithmetic prover (not presented here)

A Series of Embedded Provers (2)

- All such provers are important within a formal method platform

- The Rodin Platform for Event-B: event-b.org

- P3 is not as general as HOL, Isabelle, COQ, ...

- The logics of P3 (above) are all built in

Examples

Examples: Propositional Calculus

10

(P=Q) N (R = -Q) = (P = R)

Examples: Predicate Calculus

11

(P =Q) N(—R = —-Q) = (P = R)

Va,y-P(x) A Q(y) = (3z-R(2) AS(z,y,2))
73%‘ -)Q(w) vV R(x)

:jy-R(y) = (3z-Q(2) N S(a,y,z))
Jdx-Vy-3z-S(x,y, 2)

Examples: Equality

12

(P = Q) N ("R = Q) = (P = R)

Va,y - P(r) A Qy) = (3z- R(z) AS(=,y,2))
;a(n °)Q(w) vV R(x)

;y-R(y) = (3z-Q(2) N S(a,y,z))
Jdx-Vy-3z-S(x,y, 2)

Ve-P(x) N Q(x) = x=a V x=0>
— R(a)

:‘v’>:13Q(a:) N R(x) = P(x)
Ve:-Q(x) N R(x) = =z =2D>

Examples: Set Theory 13

(P = Q) N ("R = Q) = (P = R)

Vz,y - P(x) A Qly) = (3z-R(z) ANS(z,y,2))
Yja(v -)Q(w) vV R(x)

Vy:-R(y) = (Fz-Q(2) A S(a,y,2))
—

Jdx-Vy-3z-S(x,y, 2)

_ _ cU+—S
z%-(CILD)(a:)/\Q(:B)é:B—a\/:B—b gEU:S
Va-Qx) A R(z) = P(x) AN
: 9 9
Ve -Q(x) N R(x) = =25 :;:q

Price of Interactive Proofs in Industrial Projects

14

Price of Interactive Proofs in Industrial Projects

15

- n: number of lines of generated code

Price of Interactive Proofs in Industrial Projects

16

- n: number of lines of generated code

- f: proof factor. Typical values are 2 or 3.

n/ f is the number of proofs generated

Price of Interactive Proofs in Industrial Projects

17

- n: number of lines of generated code

- f: proof factor. Typical values are 2 or 3.

n/ f is the number of proofs generated

- x. percentage of interactive proofs. Typical values are 2, 5, 10.
n.x/100. f is the number of interactive proofs generated

Price of Interactive Proofs in Industrial Projects 18

- n: number of lines of generated code

-

proof factor. Typical values are 2 or 3.

n/ f is the number of proofs generated

. percentage of interactive proofs. Typical values are 2, 5, 10.

n.x/100. f is the number of interactive proofs generated

: number of interactive proofs per man-day. Typical value is 20.

n.x/100. f.p is the number of man-day for the interactive proofs

Price of Interactive Proofs in Industrial Projects 19

- n: number of lines of generated code

- f: proof factor. Typical values are 2 or 3.

n/ f is the number of proofs generated

- x. percentage of interactive proofs. Typical values are 2, 5, 10.

n.x/100. f is the number of interactive proofs generated

- p: number of interactive proofs per man-day. Typical value is 20.

n.x/100. f.p is the number of man-day for the interactive proofs

- m: number of man-months to perform the interactive proofs.

n.x/100. f.p.20 is the number of man-month for proving

Price of Interactive Proofs in Industrial Projects (cont’d)

20

- m = n.x/100. f.p.20 is the number of man-months needed for proving

100,000 | 100,000 | 100,000
2 2 2

2.5% 5% 10%

20 20 20

3.12 6.25 12.5

This shows the importance to prove as many automatic proofs as we can

Outline

21

- Propositional Calculus Prover

- Predicate Calculus Prover

- Equality Prover

- Set Theory prover

- Conclusion

The propositional calculus prover

Approach

22

- Transforming the predicate P into the sequent

F =P = 1

- Applying inference rules of the forms

HF = (PopQ) = R HF (Pop Q) = R

where op is one of A, V, =, and <

- Applying some rewriting rules to finish up the proof

Propositional Calculus Prover Outline

23

- Syntax
- Inference rules
- Rewriting rules

- Example

Syntax for the Propositional Calculus Prover

24

predicate = T
1
- predicate
predicate N predicate
predicate V predicate
predicate =- predicate
predicate < predicate

Priorities and parentheses can be used for managing ambiguities.

Inference Rules for the Propositional Calculus Prover (1) 25

F—-P= 1
=L INI

FP= (.= (P, =>0-Q=1))..)
Pl/\.../\PniQ lNI2

H-F-Q =R H--P=R HFP=(Q=R)
HF - (PAQ)= R AND1 H-F(PAQ) =R AND?2

H--P = (-Q = R) HFP =R HFQ=R
HF - (PVQ) =R OR1 HF (PVQ) =R OR2

Inference Rules for the Propositional Calculus Prover (2) 26

H-FP=(-Q = R) HF-P=R HFQ =R
HF-(P=Q)=R IMP1 H-(P=Q)=R IMP2
Hl—Pi(ﬂQiR) H|——IP:>(Q:>R) EQV].

HFP=(Q=R) HF-P=(-Q = R)
HF (P& Q)= R EQV2

Inference Rules for the Propositional Calculus Prover (3) 27

H,— P + simplify(F(— T))
HF - P = F(P)

H,P + simplify(F(T))

EVL] HF P = F(P)

EVL2

-in EVL1 and EVL2, P is supposed to be a literal

Rewriting Rules for the Propositional Calculus Prover 28

T NP == P andl
- T A P == =T and3
T VvV P == T orl
-1 V P == P or3
- T = P == imp3
T & P == P eqvl

- T & P == =P eqv3

P AN T == P and2

P /\ _IT = —|—|_ and4
PNV T == T or2

PV -T == P ord

P =T == T imp2

P = -1 == =P imp4
P& T == P eqv2
P& - 1T == =P eqv4d

Example of Propositional Calculus Proof

29

(P=Q) N"R=-Q) = (P = R)

(P =Q) = (-R=-Q) = (~(P = R)= 1))
- P = (R = -Q) = (-(P = R)= 1))
(R = -Q) = (w(—-T = R)= 1)

"R = -Q) = (—-T= 1)
(R = -Q) =T
T
Q= (-R = -Q) = (-(P = R)= 1))
(R = -T) = (-(P = R)= 1)
-—-R = (-(P = R)= 1)
R= (—-(P=R)= 1)
(P = T)= 1
- T = L
T

INI2
IMP2
EVL1

imp3
imp3
imp2
AXM
EVL2
imp4
NOT
EVL2
imp2
imp3
AXM

The first order predicate calculus prover

Approach 30

- Applying the propositional calculus rules
- Applying some new predicate calculus rewriting and inference rules

- Until one reaches the following sequent:

HHEF L

- Trying then to derive a contradiction within the set of hypotheses H

- Sometimes restart the process (proof by cases)

First Order Predicate Calculus Prover Outline

31

- Syntax

- Rewriting rules

- Inference rules

- Normalisation and Skolemisation

- Mechanism (unit preference strategy)

- Example

Syntax for the First Order Predicate Calculus Prover

32

This prover is built on top of the previous one

predicate ::=

vartables ::=

-
1

— predicate

predicate N\ predicate
predicate V predicate
predicate = predicate
predicate & predicate
V variables - predicate

Jwvariables - predicate

rdenti fier
tdenti fier, variables

Predicate Calculus Rewriting Rules

33

Ve -Vy-P(x,y) == Vz,y - P(x,y)

Hw.ay.P(m,y) —— HCL‘,y'P(CB,y)

grpl

grp2

Predicate Calculus Inference Rules 34

HF-P=R H, normalise (Vx - P) - R

H, normalise (V- - P) +F R H-P =R
HF—-(dx-P)= R XSTl H-(dz:-P)=R X5T2

- In rules ALL1 and XST2, x is supposed to be not free in H and R

- normalise explained in next slide

Outcome of Normalisation: Two Forms

35

1. The first form corresponds to the following (with n > 1):
Vo= (Li(x) N ... N Li(x) N ... N L,(x))

where each predicate L;(x) is a literal.

2. The second form corresponds to the following:
Va . L(x)

where the predicate L(x) is a literal.

Normalisation Rewriting Rules (1) 36

Introducing once a Double Negation at the Outermost Level
Ve - P(x) == Vx-—--P(x)
Removing Implications and Equivalences

P=Q == PVAQ P&Q == (RPVQ)AN(RPYV Q)

Moving down Negations

=P == P (outside outermost level)
(P ANQ) == PV ~Q
(P V Q) == P AN-Q
-V P(x) == Hdx--P(x)

—dx - P(x) == Vx-:-—-P(x)

Normalisation Rewriting Rules (2) 37

Moving up Disjunctions

PAQVR) == (PAQ) V (PAR)
(PVQ AR == (PAR)V (Q AR)
dz-P(z) vV Q(z) == (Hz-P(z)) v (3z-Q(x))

Removing Disjunctions at the Outermost Level

V.= (P(x) V Q(x)) == (Vo-=2P(x)) A (Ve -Q(x))

Removing Existential Quantifications at the Outermost Level

Ve:-=(... N Jy:P(x,y)) N...) == Ve,y-=(... AP(xz,y) N ...)

Removing Universal Quantifications at the Outermost Level (Skolemisation)

Ve-=(... N Vy:P(x,y)) N...) == Vx:-=(.. NP(x,f(x)) A ...)

Example of Normalisation

38

Va,y-P(x) N Q(y) = (3z-R(z) NS(z,y,2))
Ve -Q(x) V R(x)

P(a)

:zy-R(y) = (3z-Q(2) N S(a,y,z))
Jdx-Vy-3z-S(x,y, 2)

After normalisation and skolemisation, we obtain the following:

Va,y-—(P(x) A Q(y) N —~R(a(z,y)))
Ve,y - (P(x) N Q(y) N —~S(z,y,a(x,y)))
Ve -=(=Q(x) N = R(x))

P(a)

Vy-=(R(y) N ~Q(b(y)))

Vy-—-(R(y) N =S(a,y,b(y)))

Ve,z+—S(xz,c(x), 2)

N Ol WIN -

Skolemisation has the effect of cutting hypotheses

General Instantiation Rule 39

H,Vax-P(x), P(E) - L
H,Vx-P(x) - L

INS

- The problem is now to discover instantiating expressions E
- In order to derive a contradiction
- We use the "unit preference strategy"

- The Unit Preference Strateqgy in Theorem Proving by L. Wos et al.

Fall Joint Computer Conference, 1964.

- It consists in diminishing the size of instantiated hypotheses

Partition of the Hypotheses 40

- A set SLH made of Single Literal Hypotheses:
L
- A set MLH made of Multiple Literal Hypotheses (n > 1):
- (Ly N ... N L,)
- A set SUH made of Single Universal Hypotheses:
Va-L(x)
- A set MUH made of Multiple Universal Hypotheses:

V- (Li(x) AN ... N Ly(x))

Example

41

Ve,y-—(P(x) A Q(y) N - R(a(zx,y)))
‘v’w,y-—l(P(a:) A Q(y) N\ —uS(:c,y,a(a:,y)))
\V/ZE_I(—IQ(.’,D) /\ ﬁR(CE))

P(a)

Vy-=(R(y) A =Q(b(y)))

Vy--(R(y) A = S(a,y,b(y)))
Ve,z-—=S5(x,c(x), 2)

O Ok W=

- MUH is made of 1, 2, 3, 5, and 6.
- SUH is made of 7.
- SLH is made of 4.

Discovering Contradictions

42

- SLH contains _L.

- SLH contains L and = L

- SUH contains Vz- L(x) and Vy-— L(y)

- SUH contains Vx - L(x) and SLH contains = L(E)

- SUH contains V- — L(x) and SLH contains L(FE)

Entering a New Hypothesis

43

- In SLH or SUH
- Check for contradiction (with SLH and SUH)
- Simplify some MLH or MUH

- In MLH or MUH
- Check how to simplify it with SLH and SUH

Example of First Order Predicate Calculus Proof (1)

44

Va,y-P(x) N Q(y) = (3z-R(z) NS(z,y,2))
Ve -Q(x) V R(x)

P(a)

:zy-R(y) = (3z-Q(2) N S(a,y,z))
Jdx-Vy-3z-S(x,y, 2)

After normalisation, we obtain the following:

Va,y- - (P(x) A Q(y) N —~R(a(z,y)))
Vz,y - (P(x) N Q(y) N ~S(z,y,a(x,y)))
V.- (=Q(x) N - R(x))

P(a)

Vy-=(R(y) N ~Q(b(y)))

Vy-—-(R(y) N =S(a,y,b(y)))

Ve,z+—S(xz,c(x), 2)

N Ol WIN -

Example of First Order Predicate Calculus Proof (cont’d) 45

: Va,y-—-(P(x) A
: Va,y:—(P(x) A
: V.= (mQ(x) A
: P(a)

. Yy (R(y) A ~Q(b(y)))

: Vy-—(R(y) A 2S(a,y,b(y)))
: Va,z--85(x,c(x), 2)

R(a(z,y)))

Q(y) N -
Q(y) N\ _'S(wayaa(way)))

" R(z))

O Ol W=

We obtain the following instantiations:

8: Vy-—(Q(y) N ~R(a(a,y))) (1,4)
9: Vy-— (Q(y) AN S(CL, Y, a(aa y))) (27 4)
10: Vx:-—(P(x) N Q(c(x))) (2,7)
11: = R(c(a)) (6,7)
12: = Q(c(a)) (9,7)
13: Q((a)) (3, 11)

Contradiction between 12 and 13.

The equality prover

Approach

46

- Apply propositional and predicate calculus rules

- Use specific equality rules

Equality Prover Outline

47

- Syntax
- Inference rules
- "One point" rule

- Example

Syntax for the Equality Prover

48

This prover is built on top of the previous one

predicate = T
1
- predicate
predicate N predicate
predicate V predicate
predicate = predicate
predicate < predicate
V variables - predicate
Jdwvariables - predicate
ETPresston — erpression

variables = wdentifier
rdenti fier, variables

expression ::= dentifier
exrpression —» exrpression

Equality Inference Rules 49
H-P
HF - (E=E) = P EQL2 AFre=r=p EQLL
HE)FPEF) QL3 HEF)FP(F) _ EqLa

H(x) F x=F = P(x)

where x is a constant which is not free in F

H(x) - F=x = P(x)

Other Equality Rules

50

- Equality between pairs

- Applying an equality between expressions

Theoretical "One Point" Rules

For universally quantified predicates:

VYgeeeyTyeoeyz P(yyeooyxy...,2) Yy, 2. P(y,
e
Q(Ysyeves®yeuony2) == :g(y’
=
R(y,...,zy...,2)

For existentially quantified predicates:

Ely,...,ar:,...,z-P(y,E..,m,...,z) Jy,...,2 P(y,...
€T — ——
Q(Yyeoos@yeony 2) Qy; .-

where variable x= is not free in E

R(y,...

Practical "One Point" Rules

92

Applied during normalisation at the outermost level BEFORE skolemisation

Vy,eoos@yeeyz- 1 (Ply...) N oot ANz=FE A ... A Q..

Vyyeoiyza(P(E,...) A ... A Q(E,...))

9)

Example of Proof with the Equality Prover

53

Ve:-P(x) N Q(x) = x=a V x=0b
—|R(a)

Ve -Q(x) N R(x) = P(x)

=

Ve -Q(x) N R(x) = ==25>

The normalisation yields the following:

va(_l)(P(w) AN Q(x) Nx#a N x F#Db)
. Va-—(Q(®) A R(@) A = P(x))

: Q(x)

: R(x)

: xF£Db

O Ol WM

Example of Proof with the Equality Prover (cont’d)

o4

‘v’:%(—l)(P(w) AN Q(x) Nx#a N x#Db)
Vo2 (Q(x) N R(x) N —P(x))

Q(x)

R(x)

x £b

SYCU = W N =

Instantiations yield:

7: P(x) (4,5, 3)
8: x=a (1,7,4,6)
9: R(a) (5, 8)

9 contradicts 2.

The set theory prover

Approach

95

- Introducing the membership operator &

- Translating membership predicates 2 € S as much as possible
- Performing a predicate calculus proof of the translated predicate
- Set theory specific mechanisms

- Using the set theory presented in:
Modeling in Event-B by J-R. Abrial. CUP (2010)

Set Theory Prover Outline

56

- Syntax

- Axioms of set theory

- Operators of set theory

- Examples of translation

- Exploiting types

- Example

- Instantiating set quantified variables (2nd order)

- Partial translations

Set Theory Prover Syntax

S7

- This prover is built on top of the previous one

predicate

vartables

exrpression

o
1

- predicate

predicate N\ predicate
predicate V predicate
predicate = predicate
predicate < predicate

Y variables - predicate
Jdwvariables - predicate
ErPression — exrpression
erpression € exrpression

tdenti fier
rdenti fier, variables

tdent frer

ELPTression — erpression
exrpression X exrpression
P(expression)

{ variables - predicate | expression }

Axioms of Set Theory

58

Predicates of the form E € S are translated as indicated

Operator

Predicate

Rewritten

Cartesian product

E—FeSXxT

EeS NFeT

Power set

E € P(S)

Ve-x e &l = xS

Set comprehension

Ec{xz-P|F}

de-P N F=FE

Set equality

S=T

S € P(T) A T € P(S)

Variable x is not free in £ and S

Elementary Set Operators

59

Predicates of the form E € S are translated as indicated

Operator Predicate Rewritten
Inclusion SCT S € P(T)
Union EesSuT EeS v EeT
Intersection EcecSNT EeS N EeT
Difference EcS\T EcS N =-(EeT)
Extension E € {a,...,b} E=a V ... V E=0b)
Empty set Eecgo 1

Binary Relation Operators

60

Predicates of the form E € S are translated as indicated

Operator Predicate Rewritten
Binary relations recS+T rCSxT
Converse E— Fcr! F—Ecr
Relational Image F € r[U] dJx-x €U Nz—Fcr

Forward composition

E—Fef;g

de-E—xef N o— F€Eg

Variable z is notfreein E, F, U, r, f,and g

Functional Operators

61

Predicates of the form E € S are translated as indicated

Operator Predicate Rewritten
|dentity E— Fcid E=F
Set of all partial functions fes+T fesT f~'yf Cid
Set of all total functions fes—-»T fesS+mT S = dom (f)
Set of all partial injections fes—+T fesS+T fteT S
Set of all total injections fes—T fesS—T fleT - S
Set of all partial surjections fesw»T fesS+T T = ran (f)
Set of all total surjections fes-»T fesS—->T T = ran (f)
Set of all bijections fes—-»T fes—mT fes-»mT

Example of Translation (1) 62

The following predicate:
reS<T ANaCS AbLCS = rlaUbdb|]=rlal Ur|b]
is translated to:

Ve,y-x—ye€er => xS NyeT
Ve-x€a = €S

Ve-zx€b = xS

=

Ve (Jx0-(x0€a V 0 € b) A 0 +— x € 1)

<~
(Jx0-20€a AN 20— x €r) V (Jxz0-20 € b A 20— x € 1)

Example of Translation (2)

63

The following predicate:
feS—-T ANpeU+=>S ANqeU-S ANp;f=q;f = p=q
is translated to:

Ve,y-x—yecf =>xcS ANyeT
Ve,z0,xl-x—ax20€ f N x—xl € f = 0 =x1
Ve-dx0-x+— a0 € f
Ve, z0,xl - 20— x € f N xl—wx € f = 0 =x1
Ve,y-x—yep =>xclU NyesS
Ve,y-c—yecq == xclU ANyeS
Ve,20- (Jxl-z—xl €p N 1l — 20 € f)

<~

(Jxl-z—xl €q N 1 — 20 € f)
=

Ve, y-c—>yEp & c—yYyE€q

Types

64

Given the following statement:

T
rlal] Cb < a C S\ r~ 1T\ b]

we can determine the types of its components as follows:

type(r) = P(S x T)
type(S) = P(S)
type(T') = P(T)
type(a) = P(S)
type(b) = P(T)

They are all determined from the carrier sets S and T’

Defining the Syntax of Types

65

Defining carrier sets as basic types:

cs: S T

reS<T

aCS

bCT

=

rla] Cb & a C S\ r [T\ b]

Syntax for types:

type ::= carrier_set

type X type
P(type)

Exploiting Types

66

- Because of typing, set theoretic statements are richer than pure

Predicate Calculus statements

- Instantiating a variable with an expression

requires that they have both the same type

- Two effects:
- avoiding wrong instantiations

- allowing more instantiations

Example of Set-theoretic Proof 67

cs: ST U
feS+-mT
geT U
=
fsgesS+—U

The translation yields:

Ve, 20, zl -x—20€ f N x—xl € f = x1 = x0
Ve, z0,zl - —w2x0€g N c—xl €g = xl1 = x0
=
Ve, 20,21 - dxl-x—xl € f ANxl— 20 € g
dx0-x—x0€ f Nx0O— x1 € g
=
xl = x0

Example of Set-theoretic Proof (cont’d) 68

Ve, 20, xl-x—2x20€ f N c—xl € f = x1 = x0
Ve, z0,zl - —2x0€g N c—xl €g = xl1 = x0
=
Ve, z0,x1- dxl-x—x1l € f ANxl— 20 E g
dx0-x—x0€ f NxO— xl € g
=
xl = 0

The normalisation and skolemisation yields:

1: Vax,z0,xl-~(x—x0€ f N z—xl € f N xl1 # x0)
2: Ve, 20, xzl-—~(x—2x20€g N x—xl €g N x1 # x0)
3: a—def

4: d—be€gg

5: ar—ecf

6: e—cCc€Eg

7: b#c

Example of Set-theoretic Proof (cont’d) 69
1: Ve,20,z1-~(x—ax0€ f N x—xl € f N 20 # x1)
2: Vax,z0,xl-—~(x—x0€g N x—xl €g N 20 # x1)
3: a—def
4: d—beg
5: a—ecf
6: e—>cgEgg
7: b#c
We obtain the following successive instantiations:

8: Vxl:-—(a—zxzle f ANd#xl) (1,3)

9: Vaxl-—-(e—~xl€g A c#xl) (2,6)

10: d=e (8,5)

11: e—~bég (9,7)

12: d—bé¢g (10,11)

12 contradicts 4.

Two Important Extensions

/70

- Instantiating set quantified variables: 2nd order statements

- Partial translation of set theoretic statements

- Both extensions proposed by Dominique Cansell

Instantiating Set Quantified Variables. An Example

/1

cs: S

reS«< S
Vp-pCrlp = p=0o
Vez.-r[{z}] Cqg = z€q
r eSS

=

r ecq

The normalisation and skolemisation yields the following :

Vp,x-—(a(p) €p N = € p)
Vp,z,20- = (x0 €Ep A a(p) —x20E€r A x € p)

Ve-—(x—b(x)&r N & q)
Ve--(b(x) €Eq N x & q)
x ¢q

Ol W N =

- p is a set quantified variable: its type is P(S)

Instantiating Set Quantified Variables. An Example (cont'd) 72

Vp,x-—(a(p) ¢ p N z € p)
Vp,x,z0-—(x0 €p N a(p)—x0E€r A x € p)

Ve:-—a(x—b(x)&r N x & q)
Ve .- (b(x) eq A = ¢ q)
xZq

ClUix W N =

Quantified variable & and constant x have the same type, we obtain:

6:Vp-—(a(p) €p N = € p)

Instantiating Set Quantified Variables. An Example (cont'd) 73

Vp,x-—(a(p) ¢ p N © € p)
Vp,z,20- - (x0 €p A a(p)— 20 € r A x € p)

Ve:-—(x—bx)dr N xé&q)
Ve .-(b(z) €qg N x ¢ q)

x ¢q

Vp-—(a(p) €p N = €Dp)

OO Ul W N M=

- Suppose that we can instantiate p with {x|P(x)} in 6.
- Then the predicate « € p in 6 becomes P(x).

- By instantiating p with {x | © € q} in 6, we obtain (thanks to 5):

7: a(Q) €q

where @@ denotes the set {x | x &€ q}.

Instantiating Set Quantified Variables. An Example (cont'd) 74

Vp,xz-—-(a(p) €p N x € p)
Vp,x,z0-—(x0 €p N a(p)—x0E€r A x € p)
Ve-—(x—b(x)&r N & q)

Ve .-(b(x) €q N x ¢ q)

r ¢ q

Vp-—(a(p) ¢p N z €p)

a(Q) ¢ q

O Ot Wi =

More instantiations:

8: a(Q)— b(a(Q)) € (3,7)
9: b(a(Q)) €¢ (8,5,2)
10: a(Q) €¢q (9,4)

10 contradicts 7.

Partial Translation. An Example

75

cs: S

f C B(S)

MUAcf

VX, Y Xef NXCY =>Yef
=

MU(AUB)ef

The translation yields:

MUAegcf

VX, Y - Xef AN MVzxrzeX =>zxz€Y) =>Yecf
=

MU(AUB)E€ef

MUAEe€E fand M U (A U B) € f cannot be translated.

Partial Translation. An Example (cont'd)

/6

We continue with the proof. Normalisation yields:

MUAEe€Tf

VX,Y - = (a(X,
VX,Y - = (a(X,
MU ((AUB)¢

0 N =
< N

We obtain the following instantiations:

TeMUA
T ¢ MU (AU B)

where T stands fora(M U A, M U (A U B).

- These are put down in the goal (see next slide)

Partial Translation. An Example (cont'd) 77

T¢MUAUB) == TeMUA = 1)
and then translated yielding:
Té¢M ANTEANTEB = (TeMV TeA= 1)
We obtain the following hypotheses:

D M
6 : A
7 B

NNN
AARTR

This results in the following goal:
T VAl = L

reducingto T.

Other questions

/8

- Constructing an independent proof checker

- Detecting which hypotheses are used in a proof

Conclusion

/9

- We presented a series of embedded provers
- Implementation (in Java) is an on-going project
- Development so far is encouraging.

- Exercises of predicate calculus are all proved in:
Mathematical Logic: Applications and Theory
by J.E. Rubin. Saunders College Publishing (1990)

