
1

Rodin User + Developer Workshop

Andy Edmunds ae2@ecs.soton.ac.uk

and

Michael Butler mjb@ecs.soton.ac.uk

2

Previous work

OCB – Linking Event-B and Object-Oriented Implementations

3

Previous work

The Intermediate Specification (OCB),

• was Object Oriented in style; java-like.

• mapped to a Java implementation.

• had a large semantic gap between the Event-B model and OCB.

• gave rise to difficult refinements, due to the abstraction large gap.

4

Tasking Event-B

Tasking Event-B is an extension of Event-B,

• with a smaller semantic gap (between Event-B and Implementation

specification) than in previous work.

• with smaller refinement steps which should make proofs easier.

• with translators that map to Ada (and in the future, C).

5

Tasking Event-B

Targeting implementations with,

• Multi-tasking capability

• Tasking

• for shared memory systems.

• i.e. task/lightweight process/thread.

• using interleaving atomic executions.

• Sharing data between tasks using ‘protected objects’,

• using atomic procedure calls,

• with blocking behaviour.

6

Tasking Event-B

Has Loop, Branch, Sequence, and Synchronisation Constructs.

Protected Object’s updates Modelled by Shared Event Composition

Events can map to,

• part of a loop /branch implementation.

• a subroutine definition.

• part of a subroutine call (parameters).

7

Before Decomposition

1. Specify the abstract development.

2. Prepare for decomposition. For each event,

- identify and specify parameters (using event guards),

- substitute expressions by parameters, in event actions, where
applicable.

8

3. Allocate variables to machines during shared event decomposition
(typically to multiple Tasking/ Shared Machines)

4. Complete the decomposition.

Decompose

“Shared Machines are
ordinary Event-B machines”

9

Translation

5. Copy, or reference, decomposed machines for use in the tasking model.

6. Add Tasking Constructs to create Tasking and Shared Machines.
e.g. synch, loop, branch, sequence, priority, etc.

7. Automatic Translation to Code and Event-B

10

Tasking Event-B Notation V1

TaskBody ::=

TaskBody ; TaskBody

| if EventSynch endif

[elseif EventSynch endelseif] …

[else EventSynch endelse]

| do EventSynch [finally EventSynch] od

| EventSynch

tasktype ::= Periodic(p) | One Shot | Repeating | Triggered

priority(n)

More details @

http://wiki.event-b.org/images/TranslationV20100722.pdf

11

Event Synchronisation

EventSynch ::= LocalEvent RemoteEvent

• Tasking Local/Remote Events are annotated Event-B Events

• Local/remote is relative to a particular task.

• A local event belongs to a tasking machine,

and only updates the task’s state.

• A remote event belongs to a shared machine,

and only updates a shared machine’s state.

• Specifies ‘synchronisation’ of a local and remote events

• decomposition semantics; guards are conjoined.

• with parallel updates.

12

One-Place Buffer Example

Writer ReaderBuffer

“write a single NAT value to buffer”

“read the value from the buffer”

write read

13

Abstract Machine

machine AbstractBuffer

variables buff wVal rVal wCount sCount

…

event write
where

buff < 0
then
buff ≔ wVal
sCount ≔ sCount + 1
wCount ≔ sCount + 1

end

“buff is initially -1”

14

machine ReadWriteBuffer
refines AbstractBuffer

variables buff wVal rVal wCount
sCount

…

event write refines write
any p1 p2

where
p1 = wVal
p2 = sCount + 1
buff < 0

then
buff ≔ p1

sCount ≔ sCount + 1
wCount ≔ p2

end

was buff ≔ wVal

“The parameter wVal”

Parameterised for Decomposition (i)

15

machine ReadWriteBuffer
refines AbstractBuffer

variables buff wVal rVal wCount
sCount

…

event write refines write
any p1 p2

where
p1 = wVal
p2 = sCount + 1
buff < 0

then
buff ≔ p1

sCount ≔ sCount + 1
wCount ≔ p2

end

was wCount ≔ sCount + 1

“The parameter: sCount + 1”

Parameterised for Decomposition (ii)

16

Decomposed Machines

machine Writer

variables wVal wCount

…

event write
any p1_out p2_in

where
p2_in∈ ℤ
p1_out∈ ℤ
p1_out = wVal

then
wCount ≔ p2_in

end

machine Shared

variables buff sCount

…

event write
any p1_in p2_out

where
p2_out∈ ℤ
p1_in∈ ℤ
p2_out = sCount + 1
buff < 0

then
buff ≔ p1_in

sCount ≔ sCount + 1
end

• Parameter renaming is for clarity only,
• but parameters will be ‘paired’ in order of declaration
for translation.

17

Adding the Tasking Constructs

tasking machine Writer
priority 5
tasktype triggered
variables wVal wCount

…

body
w1: � write || Shared.write � ;
w2: …

event sync write
any
out p1_out

in p2_in

where
p2_in∈ ℤ
p1_out∈ ℤ
p1_out = wVal

then
wCount ≔ p2_in

end

machine Shared

variables buff sCount

…

event write
any
in p1_in

out p2_out

where
p2_out∈ ℤ
p1_in∈ ℤ
p2_out = sCount + 1
buff < 0

then
buff ≔ p1_in

sCount ≔ sCount + 1
end

18

The Resulting Event-B model

machine Shared

variables buff sCount

invariants
… // various typing

event write
any p1_in p2_out

where
p2_out∈ ℤ
p1_in∈ ℤ
p2_out = sCount + 1
buff < 0

then
buff ≔ p1_in

sCount ≔ sCount + 1
end

machine Writer refines Writer
sees autoGenCTX_Writer

variables
wVal wCount wCount2 Writer_pc

Invariants
…
Writer_pc∈Writer_pc_Set

events
event write refines write
any p1_out p2_in

where
p2_in∈ ℤ
p1_out∈ ℤ
p1_out = wVal
Writer_pc = w1

then
wCount ≔ p1_out

Writer_pc ≔ w2
end

“Using Program Counters”

19

The Resulting Event-B model

machine Writer refines Writer
sees autoGenCTX_Writer

variables
wVal wCount wCount2 write

Invariants
…
write∈ BOOL

events
event write refines write
any p1_out p2_in

where
p2_in∈ ℤ
p1_out∈ ℤ
p1_out = wVal
write = TRUE

then
wCount ≔ p1_out

write ≔ FALSE
end

“Using Boolean Flags”

20

The Writer, Common Language

Model

Task Writer
taskType triggered

Declarations
s: Shared
wVal: Integer := 5
wCount: Integer := 0

Subroutine calcWVal(){
wVal := wVal * 2

}

Task Body
s.write(wVal, wCount);
…

.. or as pretty print

“CLM only needs to be machine readable”

• Common Language Model

• for further translation to AdaEMF etc.

21

The Shared, Common Language

Model

Protected Shared
Declarations

buff: Integer := -1
sCount: Integer := 0
buffX: Integer := -1

Subroutine write(p1_in: in Integer,
p2_out: out Integer)

when buff < 0 {
p2_out := sCount + 1;
initial_buff := buff;
buff := p1_in;
…

}
…

.. as pretty print

“Conditional waiting
in implementations”

22

TODO

• Common Language Metamodel V1 to AdaEMF translation,

• for use with AdaEMF to AdaText Source Translator,

• from Alexei in Newcastle.

• Testing and Evaluation of Common Language Metamodel

V1 and tools.

• Version 2 of the Intermediate Language ??

