
Modelling Recursion in Event-B

Stefan Hallerstede

Universität Düsseldorf

Rodin User and Developer Workshop
Düsseldorf

21 September 2010

Contents

Introduction

Modelling a Recursive Procedure

Recursive Program Development
Model and Proof
Abstract Program
Concrete Program

Program Termination

Mutual Recursion

Conclusion

Contents

Introduction

Modelling a Recursive Procedure

Recursive Program Development
Model and Proof
Abstract Program
Concrete Program

Program Termination

Mutual Recursion

Conclusion

Development and Verification of Recursive Programs

I We seek a method:

I Easy to apply (also to larger programs)

I Tool support (such as Rodin)

I Data refinement

I Imperative programs and procedures

I Some related work:1

I Program Verification (Hoare)

I Proof Outlines (Owicki/Gries)

I Refinement Calculus (Morgan)

I Refinement Calculus (Back)

1Missing from the list: B-Method and VDM, for instance

Method of Program Development

Model
and
Proof

Abstract
Program

Concrete
Program

extract transform

I A model describes an “abstract program”

I “Concrete programs” are an indirect target

I Maybe not reached by refinement

I “Abstract program”:

I only call-by-reference parameters

I and no global variables

Use of Event-B (and Rodin)

I Clear and direct mapping to Event-B machines

I Use Rodin to do the proofs

I Keep Event-B notion of refinement

I For now write the “mapped” model directly in Event-B

Contents

Introduction

Modelling a Recursive Procedure

Recursive Program Development
Model and Proof
Abstract Program
Concrete Program

Program Termination

Mutual Recursion

Conclusion

Proof Outline of Factorial Procedure
Program Verification

{n ≥ 0 ∧ n = N } Fac(n) {n = N ! } ::
{n ≥ 0 ∧ n = N }
if n = 0 then
{n = 0 ∧ n = N }
n := 1
{n = N ! }

else
{n > 0 ∧ n = N }
var m := n ;
{m = N ∧ n > 0 ∧ n = N−1 }
n := n−1 ;
{m = N ∧ n ≥ 0 ∧ n = (N−1) }
Fac(n) ;
{m = N ∧ n = (N−1)! }
n := m ∗ n
{n = N ! }

end
{n = N ! }

Graphical Notation for a Proof Outline Using Events
Towards Event-B

faci

face facf facg

Fac

Fac

I faci = when n = 0 then n := 1 end

I face = when n > 0 then m, n := n, n− 1 end

I facf = when n ≥ 0 then n := n! end

I facg = n := m ∗ n

Contents

Introduction

Modelling a Recursive Procedure

Recursive Program Development
Model and Proof
Abstract Program
Concrete Program

Program Termination

Mutual Recursion

Conclusion

Contents

Introduction

Modelling a Recursive Procedure

Recursive Program Development
Model and Proof
Abstract Program
Concrete Program

Program Termination

Mutual Recursion

Conclusion

Factorial Specification

facf

Fac

t t

facf = when n ≥ 0 then n := n! end

@t true

Factorial Refinement Sketch

facf

Fac

t t

Factorial Refinement Sketch

faci

face fach facg

facf

Fac

t t

t

t

p q t

Factorial Refinement Sketch

faci

face fach facg

facf

Fac

t t

t

t

p q t

faci = when n = 0 then n := 1 end
face = when n > 0 then m,h := n, n− 1 end
fach = when h ≥ 0 then h := h! end
facg = n := m ∗ n

Factorial Refinement Sketch

faci

face fach facg

facf

Fac

t t

t

t

p q t

faci = when n = 0 then n := 1 end
face = when n > 0 then m,h := n, n− 1 end
fach = when h ≥ 0 then h := h! end
facg = n := m ∗ n

@p m = n
h ≥ 0
h = n−1

@q m = n
n−1 ≥ 0
h = (n−1)!

Factorial Refinement Sketch

faci

face fach facg

facf

Fac

t t

t

t

p q t

A Recursive Reference?

faci

face fach facg

facf

Fac

t t

t

t

p q t

facf = when n ≥ 0 then n := n! end
fach = when h ≥ 0 then h := h! end

A Recursive Reference?

faci

face facf facg

(n:=h)

facf

Fac

t t

t

t

p q t

facf = when n ≥ 0 then n := n! end
fach = when h ≥ 0 then h := h! end

Recursion by Instantiation

faci

face facf facg

Fac (n:=h)

facf

Fac

t t

t

t

p p q q t

Completed Factorial Model

 instantiate
refine

faci

face facf facg

Fac (n:=h)

facf

Fac

t t

t

t

p p q q t

 refine

Contents

Introduction

Modelling a Recursive Procedure

Recursive Program Development
Model and Proof
Abstract Program
Concrete Program

Program Termination

Mutual Recursion

Conclusion

Extracted Factorial Program

 instantiate
refine

faci

face facf facg

Fac (n:=h)

facf

Fac

t t

t

t

p p q q t

 refine

Model
and
Proof

Abstract
Program

Concrete
Program

extract transform

Extracted Factorial Program

 instantiate
refine

faci

face facf facg

Fac (n:=h)

facf

Fac

t t

t

t

p p q q t

 refine

Model
and
Proof

Abstract
Program

Concrete
Program

extract transform

Extracted Factorial Program

 instantiate
refine

faci

face facf facg

Fac (n:=h)

facf

Fac

t t

t

t

p p q q t

 refine

Model
and
Proof

Abstract
Program

Concrete
Program

extract transform

Extracted Factorial Program

 instantiate
refine

faci

face facf facg

Fac (n:=h)

facf

Fac

t t

t

t

p p q q t

 refine

Fac(n) ::
if n = 0 then

n := 1
else

var m, h := n, n−1 ;
Fac(h) ;
n := m ∗ h

end

Model
and
Proof

Abstract
Program

Concrete
Program

extract transform

Extracted Factorial Program

 instantiate
refine

faci

face facf facg

Fac (n:=h)

facf

Fac

t t

t

t

p p q q t

 refine

Fac(n) ::
if n = 0 then

n := 1
else

var m, h := n, n−1 ;
Fac(h) ;
n := m ∗ h

end

Model
and
Proof

Abstract
Program

Concrete
Program

extract transform

Extracted Factorial Program

 instantiate
refine

faci

face facf facg

Fac (n:=h)

facf

Fac

t t

t

t

p p q q t

 refine

Fac(n) ::
if n = 0 then

n := 1
else

var m, h := n, n−1 ;
Fac(h) ;
n := m ∗ h

end

Model
and
Proof

Abstract
Program

Concrete
Program

extract transform

Contents

Introduction

Modelling a Recursive Procedure

Recursive Program Development
Model and Proof
Abstract Program
Concrete Program

Program Termination

Mutual Recursion

Conclusion

Towards a Concrete Program

faci

face facf facg

Fac (n:=h)

facf

Fac

t t

t

t

p p q q t

Towards a Concrete Program

faci

face facf facg

Fac (n:=h)

facf

Fac

t t

t

t

p p q q t

@t k = n
@p k = h
@q k = h

Towards a Concrete Program

faci

face facf facg

Fac (n:=k)

facf

Fac

t t

t

t

p p q q t

@t k = n
@p k = h
@q k = h

faci = when k = 0 then k := 1 end
face = when k > 0 then m, k := k, k − 1 end
facg = k := m ∗ k

Concrete Factorial Program

Fac(k) ::
if k = 0 then

k := 1
else

var m := k ;
k := k−1 ;
Fac(k) ;
k := m ∗ k

end

Concrete Factorial Program

Fac(k) ::
if k = 0 then

k := 1
else

var m := k ;
k := k−1 ;
Fac(k) ;
k := m ∗ k

end

transform
−→

global var k
Fac ::

if k = 0 then
k := 1

else
var m := k ;
k := k−1 ;
Fac ;
k := m ∗ k

end

Concrete Factorial Program

Fac(k) ::
if k = 0 then

k := 1
else

var m := k ;
k := k−1 ;
Fac(k) ;
k := m ∗ k

end

transform
−→

global var k
Fac ::

if k = 0 then
k := 1

else
var m := k ;
k := k−1 ;
Fac ;
k := m ∗ k

end

Model
and
Proof

Abstract
Program

Concrete
Program

extract transform

Contents

Introduction

Modelling a Recursive Procedure

Recursive Program Development
Model and Proof
Abstract Program
Concrete Program

Program Termination

Mutual Recursion

Conclusion

Termination of the Factorial Procedure

faci

face facf facg

Fac (n:=h)

facf

Fac

t t

t

t

p p q q t

Termination of the Factorial Procedure

faci

face facf facg

Fac (n:=h)

facf

Fac

t t

t

t

p p q q t

 h ≥ 0
 h = n − 1

Termination of the Factorial Procedure

faci

face facf facg

Fac (n:=h)

facf

Fac

t t

t

t

p p q q t

 h ≥ 0
 h = n − 1

variant n

Termination of the Factorial Procedure

faci

face facf facg

Fac (n:=h)

facf

Fac

t t

t

t

p p q q t

 h ≥ 0
 h = n − 1

variant n

To be proved: n ≥ 0 ∧ n − 1 < n

Contents

Introduction

Modelling a Recursive Procedure

Recursive Program Development
Model and Proof
Abstract Program
Concrete Program

Program Termination

Mutual Recursion

Conclusion

Specification of EvenOdd
“Defunctionalisation” (J. C. Reynolds)

evni

evne oddf

Odd (o,n:=e,m)

evnf

Even

t t

t

t

p p t t

evnf = when n ≥ 0 then e := “n mod 2 = 0” end

evni = when n = 0 then e := TRUE end
evne = when n > 0 then m := n−1 end

@p m = n−1

oddi

odde evnf

Even (e,n:=o,m)

oddf

Odd

t t

t

t

q q t t

oddf = when n ≥ 0 then o := “n mod 2 6= 0” end

oddi = when n = 0 then o := FALSE end
odde = when n > 0 then m := n−1 end

@q m = n−1

Specification of EvenOdd
“Defunctionalisation” (J. C. Reynolds)

evni

evne oddf

Odd (o,n:=e,m)

evnf

Even

t t

t

t

p p t t

Even(e, n) ::
if n = 0 then
e := TRUE

else
var m := n−1 ;Odd(e,m)

end

oddi

odde evnf

Even (e,n:=o,m)

oddf

Odd

t t

t

t

q q t t

Odd(o, n) ::
if n = 0 then
o := FALSE

else
var m := n−1 ;Even(o,m)

end

Contents

Introduction

Modelling a Recursive Procedure

Recursive Program Development
Model and Proof
Abstract Program
Concrete Program

Program Termination

Mutual Recursion

Conclusion

Conclusion

I Method for sequential program development

I Recursion

I Mutual Recursion

I Termination

I To be investigated:

I Modularity

I Concurrency

I Soundness

	Introduction
	Modelling a Recursive Procedure
	Recursive Program Development
	Model and Proof
	Abstract Program
	Concrete Program

	Program Termination
	Mutual Recursion
	Conclusion

