
Modularisation/Group Refinement/Views

Alexei Iliasov

Newcastle University



Modularisation



What the plugin does

I The plugin extends the Event B modelling language with the
concept of a module

I A module is a parametrised Event B development associated
with a module interface

I An interface defines a number of operations

I A specification is decomposed by including a module in a
machine and connecting the two using operation calls and
gluing invariants



What the plugin provides

I a new type of Event B component - a module interface
(editor, pretty-printer and proof obligations generator)

I new machine constructs:IMPLEMENTS and USES

I new event attributes: group and final

I the ability to write operation calls in event actions

I additional proof obligations for operation calls

I additional proof obligations for implementation machines



Parking Lot

The task is to developep an access control and payment collection
mechanisms for a parking lot. The following main requirements
were identified:

1. no car may enter when there is no space left in the parking lot

2. a fare must be paid when a car leaves the parking lot

3. each time a car leaves the parking lot, the fare to be paid is
determined by multiplying the total length of stay since the
midnight (that is, including any previous stay(s)) by the cost
of parking per unit of time

4. the amount paid in any single transaction is capped

5. at midnight, the accumulated parking time of all cars is reset
to zero



Parking Lot

Solution overview:

1. two gates are placed to control entry and exit

2. a payment collection machine is placed near to the exit gate
in such a manner that a driver may use it before going
through the exit gate

3. the exit gate does not open until the full payment is collected

4. the entrance gate does not open if the car park is full



Abstract model

the initial model describes the phenomena of cars entering and
leaving the parking lot. It addresses the capacity restrictions
although without exhibiting a concrete mechanism for controlling
the number of cars entering the parking lot.



Model variables

I LOT SIZE - the parking lot capacity (constant)

I entered - the number of cars that have entered the parking lot

I left - the number of cars that have left the parking lot

I hence, left − entered is the current number of cars in the
parking lot

invariant
entered ∈ N
left ∈ N
entered − left ∈ 0 . . . LOT SIZE



Model events

a new car appears:

enter = when
entered − left < LOT SIZE

then
entered := entered + 1

end

a car leaves:

leave = when
entered − left > 0

then
left := left + 1

end



First refinement

In the first refinement the entrance is controlled by a gate. The
the gate prevents a car from entering when there is no free space
and also records the registration plate of an entering car.



Gate Module

The logic controlling a gate is easily decoupled from the main
model. We decompose the model into the controller part and an
entry gate

The first step of this decomposition is to define a gate module
interface.



Gate variables

I CAR - car id (registration plate)

I mcars - the number of cars that has passed through the gate

I current - the id of the car in the front of the gate

invariant
mcars ∈ N
current ∈ CAR



Gate operations

when there is no car in front of the gate, a driver may press the
gate button to try to open the gate:

carid← Button = pre
current = empty

post
current′ ∈ CAR \ {empty}
carid ′ = current

end



Gate operations

the car park controller orders the gate to open; the gate has
sensors to observe whether the car has moved through the gate
(moved = TRUE) or stayed in front of the gate:

moved← OpenGate = pre
current 6= empty

post
(moved ′ = TRUE ∧mcars ′ = mcars + 1∧

current′ = empty)∨
(moved ′ = FALSE ∧mcars ′ = mcars∧

current′ = current)
end



Gate operations

predicate mcars ′ = mcars ∧ current ′ = current in

(moved ′ = TRUE ∧mcars ′ = mcars + 1 ∧ current′ = empty)∨
(moved ′ = FALSE ∧mcars ′ = mcars ∧ current′ = current)

is necessary to indicate that mcars and current remain unchanged
in the second branch of the post-condition. This is only required
when a disjunction is used and not all variables are assigned new
values in the disjunction branches



Operating the gate

to open the gate and let a car through it, the following has to
happen:

I a driver must press the gate button (operation Button)

I the controller must activate the gate (operation OpenGate)

in our model, the main development models both driver’s and
controller’s behaviour



First refinement machine

The first refinement imports the gate module interface. Prefix
entry is used to avoid name clashes (with another gate added later
on).

When a prefixed interface is imported, all its constants and sets
appear prefixed in the importing context. This is not always
convenient. We use type instantiation to replace the type of an
imported module by a typing expression known in the importing
context. We also define a property (an axiom) that equates a
prefixed and unprefixed versions of constant empty .

uses entry : ParkingGate
types

entry CAR 7→ CAR
properties

entry empty = empty



First refinement machine

two new variables are defined in the refinement machine. They
help to link the states of the controller and the entry gate.

I incar - the id of an entering car

I inmoved - a flag indicating whether a car has passed through
the (open) entry gate

invariant
incar ∈ CAR
inmoved ∈ BOOL



Import invariant

it is necessary to provide an invariant relating the states of an
imported module and the importing machine (import invariant)

without this, a module import does not make much sense as an
overall model would be composed of two independently evolving
systems



Import invariants

when there is no car at the gate, the gate car counter has the same
value as the controller counter:

inmoved = FALSE =⇒ entered = entry mcars

when a car is passing through the entrance gate, only the gate
counter has been incremented:

inmoved = TRUE =⇒ entered + 1 = entry mcars



Import invariants

when a car is passing through the gate there must be no other car
at the gate:

inmoved = TRUE =⇒ entry current = empty

when a car is coming through the entrance gate there is certainly
free space in the parking lot:

inmoved = TRUE ∧ entry current 6= empty =⇒ entered − left < LOT SIZE



Model events

a driver presses the gate button at the entrance gate (new event):

UserPressButton = when
entered − left < LOT SIZE
entry current = empty
inmoved = FALSE

then
incar := entry Button

end

here entry Button is a call of the Button operation from the
entry module.



Model events

the parking lot controller orders the gate to open (new event):

CtrlOpenGate = when
entry current 6= empty ∧ inmoved = FALSE

then
inmoved := entry OpenGate

end



Model events

finally, the enter event is refined to reflect the model changes:

enter = when
inmoved = TRUE

then
entered := entered + 1
inmoved := FALSE

end



Development structure

all proof obligations are discharged automatically (18 total)



Second refinement

the second refinement is very similar: we add another gate - an
exit gate. the same module is imported with a new prefix to obtain
two separate modules modelling two gates.



Second refinement

one interactive proof (17 total)



Third refinement

the third refinement step is concerned with keeping the record of
car stays; this step introduces the notion of time

the definition of time will be used more than once and thus it is
convenient to place in an interface



Third refinement



Fourth refinement

in this step, before a car may leave, the car driver must pay the
amount determined by the length of stay since the midnight

the functionality of a device collecting payment is decoupled from
the controller logic and is placed in a separate module



Fourth refinement

all proof obligations are discharged automatically (34 total)



Implementing Modules

A machine providing the realisation of an interface is said to
implement the interface. This is recorded by adding the interfaces
into the IMPLEMENTS section of a machine. The fact that a
machine provides a correct implementation of interfaces is
established by a number of static checks and a set of proof
obligations. The latter appear automatically in the list of machine
proof obligations. The implementation relation is maintained
during machine refinement (subject to some syntactic constraints)
and thus the bulk of the module implementation activity is the
normal Event B refinement process.



Event Group

The first step of implementing an interface is to provide at least
one event for each interface operation. In general, an operation is
realised by a set of events (an event group). Some events play a
special role of operation termination events and are called final
events. A final event returns the control to a caller. It must satisfy
the operation post-conditions but there is no need to prove the
convergence of a final event.



Implementing ParkingGate: abstract machine

To simplify proofs, the initial implementation is a simple machine
with few events mirroring the interface operations. The machine
retains interface variables current and mcars and also defines the
operation return variables Button carid and OpenGate moved .

The names of the operation return variables are fixed for the first
machine of a module implementation. In further refinements they
may be replaced or removed using data refinement.



Implementing ParkingGate: abstract machine

The button event implements operation Button in a single atomic
step. The fact that it is associated with operation Button is stated
by group Button. Being the only event in its operation group it is
also a final event.

machine iParkingGate implements
variables current mcars Button carid OpenGate moved
events

button = final group Button
when

current = empty
then

current :∈ CAR \ {empty}
Button carid := current

end



Implementing ParkingGate: abstract machine

The machine declares two more events, both realising the
OpenGate operation. The events are final and each one handles
one of the cases of the OpenGate operation post-condition.

gate succ = final group OpenGate
when

current 6= empty
then

OpenGate moved := TRUE
mcars := mcars + 1
current := empty

end
gate nocar = final group OpenGate

when
current 6= empty

then
OpenGate moved := FALSE

end



Development structure

one interactive proof (5 total)



Implementing ParkingGate: first refinement

new variables:

I gate - the gate state: open or closed

I sensor - the state of the car sensor placed; the sensor is
placed on the parking lot of a gate

I stage - the current step of the gate operation

invariant
gate ∈ GATE
sensor ∈ BOOL
stage ∈ 0 . . . 3
stage = 1 =⇒ gate = OPEN
stage = 2 =⇒ gate = CLOSED



Implementing ParkingGate: first refinement

The refined implementation of the OpenGate operation includes
events for opening and closing the gate.

open gate = group OpenGate
when

gate = CLOSED ∧ stage = 0
then

gate := OPEN
stage := 1

end
close gate = group OpenGate

when
stage = 2

then
gate := CLOSED
stage := 3

end



Implementing ParkingGate: first refinement

the gate detects whether a car has passed through the gate while
the gate was open:

readSensor = group OpenGate
when

stage = 1
then

sensor :∈ BOOL
stage :∈ 1, 2

end



Development structure

all proof obligations are discharged automatically (26 total)



Implementing ParkingGate: second refinement

To prove the convergence of anticipated event readSensor , the car
sensor waits for a car for a given time interval. The time model is
imported from the Clock interface.

readSensor = group OpenGate
when

stage = 1
prev < delay

then
sensor , stage :| (sensor ′ = TRUE ∧ stage′ = 2)∨

(sensor ′ = FALSE ∧ stage′ = 1)
time := currentTime

end



Development structure

two interactive proofs (8 total)



The overall development structure



Implementation

I New syntatic elements at the level of unchecked machines

I Pure Event-B at the level of statically checked machines

I Custom static checking rules

I Additional proof obligations



Version 2.0

I Improved PO generation

I Process notion

I Bug fixes

I ProB and Camille integration



Developments/Case Studies

I SSF AOCS (Abo, bscw)

I Parking lot tutorial (Ncl)

I BepiColombo 2 (SSF, internal)

I NFS (Ncl, ongoing)



Extending Event-B

Event-B is a set of plugins to the Rodin platform

good:

I extending the Rodin database is easy

I contributing new static checker rules and proof obligations is
easy

I + lots of documentation appeared recently on the Event-B
wiki

bad:

I Eclipse/Java/OSes/bits (getting better)

I inconsistently exposed API (not enough abstraction layers?)

I extensions integration (text editor)

I the status and the future of EMF integration

I some Event-B plugins could be Rodin plugins (some progress:
new pretty-printer)



Questions?

The full version and the development are available at:

http://wiki.event-b.org/index.php/Modularisation Plug-in

next: Group refinement



Abstract Model

machine m0
variables v
invariant

v ∈ N
events

e = begin v := 2 end
end



Refinement objective

I v is to be replaced by a and b: v = a + b

I a and b may not be updated at the same time



Refinement

machine m1 classic
refines m0
variables a, b, pc, al , bl
invariant

a + b = v ∧ pc ∈ 1..3
events

e1 = when pc = 1 then al := 1‖pc := 2 end
e2 = when pc = 2 then bl := 1‖pc := 3 end
e3 ref e = when

pc = 3
then

a, b := al , bl
pc := 1

end
end



Refinement

Refinement proof + model

machine m1 classic
refines m0
variables a, b, pc, al , bl
invariant

a + b = v ∧ pc ∈ 1..3
events

e1 = when pc = 1 then al := 1‖pc := 2 end

e2 = when pc = 2 then bl := 1‖pc := 3 end

e3 ref e = when
pc = 3

then
a, b := al , bl
pc := 1

end
end



Another example: swap

machine m
variables a, b
invariant a ∈ N ∧ b ∈ N
initialisation a :∈ N ‖ b :∈ N
events

swap = begin a, b := b, a end
end



Refinement objective

I a and b may not be updated at the same time



Refinement objective

refinement m1a
refines m
variables a, b, x , y , pc
invariant

x ∈ N ∧ y ∈ N ∧ pc ∈ 0 . . . 3
pc = 0 =⇒ x = a ∧ y = b
pc = 1 =⇒ x = a + b ∧ y = b
pc = 2 =⇒ x = a + b ∧ y = a
pc = 3 =⇒ x = b ∧ y = a

initialisation
a, x :| a′ ∈ N ∧ x ′ = a′

b, y :| b′ ∈ N ∧ y ′ = b′

pc := 0
events

step1 = when pc = 0 then x := x + y ‖ pc := 1 end
step2 = when pc = 1 then y := x − y ‖ pc := 2 end
step3 = when pc = 2 then x := x − y ‖ pc := 3 end
swap = when pc = 3 then a, b := x , y ‖ pc := 0 end

end



Refinement objective

refinement m1a
refines m
variables a, b, x , y , pc
invariant

x ∈ N ∧ y ∈ N ∧ pc ∈ 0 . . . 3
pc = 0 =⇒ x = a ∧ y = b
pc = 1 =⇒ x = a + b ∧ y = b
pc = 2 =⇒ x = a + b ∧ y = a
pc = 3 =⇒ x = b ∧ y = a

initialisation
a, x :| a′ ∈ N ∧ x ′ = a′

b, y :| b′ ∈ N ∧ y ′ = b′

pc := 0
events

step1 = when pc = 0 then x := x + y ‖ pc := 1 end

step2 = when pc = 1 then y := x − y ‖ pc := 2 end

step3 = when pc = 2 then x := x − y ‖ pc := 3 end

swap = when pc = 3 then a, b := x , y ‖ pc := 0 end

end



A pattern

I atomicity refinement

I + data refinement

I = housekeeping event + new variables + gluing invariant



Pattern mechanisation

I new proof obligations for event split refinement for the scope
of a given refinement step

I override split refinement semantics: the combined effect of all
the refinement events achieves the effect of the abstract event

I some ordering constraints on events



Alternative Refinement

machine m1 alt
refines m0
variables a, b
invariant

a + b = v
events

e1 ref e = begin a := 1 end
e2 ref e = begin b := 1 end

end



Refinement

machine m1 classic
refines m0
variables a, b, pc, al , bl
invariant

a + b = v ∧ pc ∈ 1..3
events

e1 = when pc = 1 then al := 1‖pc := 2 end

e2 = when pc = 2 then bl := 1‖pc := 3 end

e3 ref e = when
pc = 3

then
a, b := al , bl
pc := 1

end
end



Refinement objective

refinement m1a
refines m
variables a, b, x , y , pc
invariant

x ∈ N ∧ y ∈ N ∧ pc ∈ 0 . . . 3
pc = 0 =⇒ x = a ∧ y = b
pc = 1 =⇒ x = a + b ∧ y = b
pc = 2 =⇒ x = a + b ∧ y = a
pc = 3 =⇒ x = b ∧ y = a

initialisation
a, x :| a′ ∈ N ∧ x ′ = a′

b, y :| b′ ∈ N ∧ y ′ = b′

pc := 0
events

step1 = when pc = 0 then x := x + y ‖ pc := 1 end

step2 = when pc = 1 then y := x − y ‖ pc := 2 end

step3 = when pc = 2 then x := x − y ‖ pc := 3 end

swap = when pc = 3 then a, b := x , y ‖ pc := 0 end

end

31/0 POs



Alternative Refinement

refinement m1b
refines m
variables a, b
invariant a ∈ N ∧ b ∈ N
initialisation a :∈ N ‖ b :∈ N
events

swap1 = begin a := a + b end
swap2 = begin b := a− b end
swap3 = begin a := a− b end

end

2/0 POs



...

demo



Questions?

The plugin and some documentation is here:

http://wiki.event-b.org/index.php/Group refinement plugin

next: Views


