
Addressing Extensibility Issues in Rodin
Language and Prover Extensibility

Issam Maamria and Michael Butler

Electronics and Computer Science
University of Southampton

Southampton, UK

September 22, 2010



Outline

1 Introduction

2 Motivation

3 Overview of Rule-based Prover

4 Language Issues

5 Prover Issues

6 Our Requirements

7 Theory and Rule-based Prover

8 Timeline

9 Conclusion

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 2 / 24



Introduction

Tools include but not limited to:

parser and type checker,
editors and viewers,
static checkers and proof obligation generators,
a proof manager and a set of provers.

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 3 / 24



Introduction(2)

Provers include ML (rule-based), PP (semi-decision procedure) as well as the
internal proving infrastructure which has a set of reasoners (schematic proof
rules).

Proofs are important to modelling as they enhance the understanding of the
model.

Simply inspecting failed automatic proof attempts can provide a sizeable
insight into the corresponding model.

The proving infrastructure is extensible. The Rule-based Prover (RbP) is a
rewriting-based prover contributed to the framework.

The usual issues of soundness arise when you allow such extensibility.

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 4 / 24



Motivation

Extending the proving infrastructure of Rodin can be achieved through
external provers as well as Java-based reasoners and tactics.

Rule-based Prover facilitates the specification of rewrite rules and their
validation.

It is desirable to relieve the user from having to use Java for developing proof
rules.

Soundness is a major concern when giving power to the user to specify proof
rules.

An approach that achieves an acceptable trade-off between usability and
maintaining soundness is certainly appealing.

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 5 / 24



Motivation(2)

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 6 / 24



Motivation(3)

We distinguish between Event-B modelling ‘outer’ syntax and ‘inner’ syntax.

Outer syntax is based on the modelling elements of the Rodin Database.

Many plug-ins take advantage of the database to add specialist modelling
constructs e.g., Records and Modularisation plug-ins.

Extending the inner syntax (otherwise known as the mathematical language)
is a different issue altogether.

The Event-B mathematical language is fixed as an AST.

As an example, the Seq operator which is present in classical B is missing in
Event-B. Many modelling patterns may benefit from having such an operator.

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 7 / 24



Rule-based Prover

The Rule-based Prover is a rewriting-based prover that can work in two
modes: automatic and interactive.

The user can specify rewrite rules, and proof obligations are generated to
validate them.

The concept of theory deployment ensures that the user is aware of the
soundness of the specified rules.

The prover uses the existing reasoner and tactics framework. It, however,
uses a generic pattern matching mechanism to handle rules applicability and
application.

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 8 / 24



Rule-based Prover(2)

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 9 / 24



Language Issues

Records are recent addition to the Event-B language. The implementation is
achieved by placing a syntactic layer whereby records are defined using a
familiar syntactic sugar. The definitions are then translated to a set of
Event-B functions.

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 10 / 24



Language Issues(2)

Records are important as they are natural choices for certain modelling
patterns.

Users will appreciate more power to extend the Event-B mathematical
language with operators that might correspond directly to certain elements of
their model.

Examples of such operators include the transitive closure tcl and the
sequence operator Seq.

A workaround that is not scalable is to define such operators using contexts.
However, they are not operators as they cannot be attributed to be
polymorphic. They can only be used with the types (i.e., carrier sets) with
which they are defined.

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 11 / 24



Prover Issues

Proofs are mightily important in the reactive approach used for Event-B in
Rodin.

Reasoners are Java objects that encapsulate the notion of a schematic proof
rule.

They are written in Java which must be scary to some users.

External prover (e.g., ML and PP) can be added by implementing certain
interfaces.

The Rule-based Prover can be used for a certain class of rewrite rules.

What is desirable is to have a framework to specify inference rules, rewrite
rules as well as polymorphic theorems.

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 12 / 24



Prover Issues(2)

It is an important usability issue that simple proof obligations (POs) get
discharged automatically. The idea is that trivial POs do not offer much
insight into the model.

However, users will appreciate the ability to define their proof rules. The
Isabelle family of theorem provers offers such capabilities.

Furthermore, extensions to the Event-B inner syntax must be accompanied
by prover extensions. Users must be able to reason about their extensions.

The Event-B approach of PO generation can be emulated to ensure
soundness issues are brought to the user’s attention as is done in the
Rule-based Prover.

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 13 / 24



Our Requirements

Language Extensions:

Add support for user-defined (polymorphic) operators.
Add support for user-defined datatypes (e.g., Tree).

Prover Extensions:

Add support for user-defined inference rules.
Add support for user-defined polymorphic theorems.

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 14 / 24



Theory component and Rule-based Prover

The Theory component:

theory name

type parameters T1, ...,Tn

{⟨ Datatype Definitions ⟩
∣⟨ Operator Definitions ⟩
∣⟨ Rewrite Rules ⟩
∣⟨ Inference Rules ⟩
∣⟨ Theorems ⟩}

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 15 / 24



Theory component and Rule-based Prover(2)

Operator Definitions:

operator symbol (predicate ∣ expression)

(prefix ∣ infix) [assoc] [commut]

arguments x1, ..., xm

condition P(x1, ..., xn)

definition E (x1, ..., xn)

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 16 / 24



Theory component and Rule-based Prover(3)

Operator Proof Obligations:

Well-definedness P(x1, ..., xn) ⇒ D(E (x1, ..., xn))

Commutativity

Associativity

Operator Example:

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 17 / 24



Theory component and Rule-based Prover(4)

Datatype Definitions:

datatype name

type arguments T1, ...,Tp

constructors

c1(d1
1 : E 1

1 , ..., d j
1 : E j

1)

.

.

cq(d1
q : E 1

q , ..., dk
q : E k

q )

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 18 / 24



Theory component and Rule-based Prover(5)

Datatype Example:

Research is being carried out on the foundations of datatype extensions for
Event-B.

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 19 / 24



Theory component and Rule-based Prover(6)

Language extensions require prover extensions.

Theories can contain rewrite rules, inference rules and polymorphic theorems.

All rules are polymorphic on their corresponding theory type parameters.

Inference rule example:

x = 0 ∨ y = 0

⊢
x ∗ y = 0

Theorem example:

∀x , y ⋅ (x = 0 ∨ y = 0)⇒ x ∗ y = 0

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 20 / 24



Timeline

Release of Theory Plug-in v0.5: October 8, 2010.

Need user feedback to improve the plug-in before it gets shipped as part of
the Core.

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 21 / 24



Conclusion

We have shown an approach that addresses extensibility issues in Rodin using
a familiar technique.

Proof obligations are generated to ensure soundness is not compromised.

Operator definitions do not extend the language in the true sense of the word.

Datatype definitions do extend the language. More work is being carried out
on the foundations of such additions.

Language extensions go hand in hand with prover extensions. As such, both
are defined using the same construct.

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 22 / 24



Acknowledgement

This work has been possible with the valuable contributions from various people:

Laurent Voisin

Nicolas Beauger

Thomas Muller

Carine Pascal

Matthias Shmaltz

Stefan Hallerstede

Michael Leuschel

The Southampton Team

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 23 / 24



Questions

Issam Maamria, Michael Butler (ECS) Addressing Extensibility Issues in Rodin September 22, 2010 24 / 24


	Outline
	Introduction
	Motivation
	Overview of Rule-based Prover
	Language Issues
	Prover Issues
	Our Requirements
	Theory and Rule-based Prover
	Timeline
	Conclusion
	Acknowledgement
	Questions

