Second Rodin User and Developer Workshop,
Dusseldorf, 20-22 september 2010

Event-B models of

P systems

Florentin IPATE
Adrian TURCANU

Romania

" J
Summary
m Generalities about P systems
m A simple example
m A first Event-B model
m About Kripke structures

m The corresponding Kripke structure of a P
system

m A refinement

mLTL

m On P system testing using model checking
m Conclusions and future work

"
Generalities about P systems

Membrane computing, the research field initiated by Gheorghe
Paun 1n 1998, aims to define computational models, called P systems,
which are inspired by the behavior and structure of the living cell.

A n—membrane P systemis a tuple I/ = (V,u,w,,...w_ ,R,,....R),
where :
-V 1s a finite alphabet
- u defines a membrane structure which is a hierarchical arrangement
of n compartments called regions delimited by membranes
- w, represents the initial multiset of objects (strings over V)
occurring in region i

- R, denotes the set of processing rules applied in region i.

Rules in each region have the formu — (a,,t,),...,(a_,t),

whereu €V, a, €V ,t. €{in,out,here}. When such a rule s
applied to a multiset # in the current region :

-u 1s replaced by the symbols a;, with ¢, = here

- symbols a, with ¢, = out are sent to the outer region or outside
the system

- symbols a, with ¢, = in are sent into one of the regions contained
in the current one, arbitrarily chosen.

The rules are applied in a maximally parallel mode :

they are used 1n all the regions in the same time and in each region

all the symbols that may be proceed must be.

A configuration of I7isa tuplec = (u,,...,u,), whereu, EV"

is the multiset associated with the region i = 1,x.

A configuration is called terminal in none of its components can be
further derived.

The output of the computation i1s given by the objects in a specified

output membrane.

" S
A simple example

We give as a firstexample a very simple P system, with one membrane,
having the alphabet V' = {s,a, b, ¢}, the initial multiset w = s and the rules :
v, .8 —=>ab
ria—c
1, b—bc
r,:b—c

We will use 1t for our first Event - B models.

" S
A first Event-B model

We will give some general ideas about modeling an 1 - membrane P system using the
Event - B formalism.
For each object we introduce a variable representing the number of objects of
that type that can be consumed.
Also, forany object from the right side of any rule we will introduce an auxiliary
variable representing the number of produced objects of that type. It will be used
in order to be incremented as a consequence of the application of differentrules at
one step.
We will introduce an event for each rule.
Finally, when no rule can be further applied, we will introduce an actualization event :
every variable a will receive the value of g, (a. = a,) and q, resets to 0.
Next, we apply these general ideas to the first example of P system, presented before.
We use 7 variables, all natural numbers:
— s for thenumber of occurrences of object s;
—a, a, for the number of occurrences of object a;
— b, b, for the number of occurrences of object b;

— ¢, ¢, for thenumber of occurrences of object c;

We use the followingevents :
—eventinitialization:s =1, a=b=c=a, =b, =c, =0end.
v,:s —ab

—eventrule 1:whens >0thens:=s-1

a =a, +1
b, =b +1
end.

ria—>c
—eventrule 2:whena>0thena:==a-1
¢, =c +1

end.

r,:b—bc

—eventrule 3:when b > 0 then ¢, := ¢, + 1 end.

r,:b—c

—eventrule 4:whenb >0thenb:=b-1
¢, =c +1
end.

—event actualization : whens =a =b=0then a:=q,

b:=b,

c=c

a,=b =c =0
end.

So, the first model is done.

The 21 POs are easy to check and are automatically.

" S
About Kripke structures

A Kripke structure over a set of atomic propositions AP is a four tuple
M =(S,I,H,L), where:

- S 1s a finite set of states

- I C S is an initials state set

-H C § xS isaleft-total transition relation

-L:S — 2" is a labelling function that maps each state into the set of atomic
propositions that hold in that state (i.e. L(s) = {p&E AP | p is true in state s}).

A path in a this Kripke structure M is an infinite sequence of states
T = §,5...such that(s, s.,,) €H, foreveryi = 0. We say that path x starts in state s
if s, = s. A finite path 1s a prefix of an infinite path.

The following notations are used :
Paths(M, § = the set of paths of M that start in state s.

Path(M) = U Paths(M,s)1.e. the set of all paths starting in an initial state.
s&l

FPath(M) = the set of all finite paths frominitial states. ‘0

" B
The corresponding Kripke structure

of a P system

We consider an 1 - membrane P system I/ = (V, u,w, R), where

R={n,...,r, }Eachruler, i =1,m,1sof the formu, = v,, whereu, and v,
are multisets over an alphabet I .

In order to define the Kripke structure equivalent to 7/ we use two predicates :
-~ MAX PARAL(yu,,v,,n,,...,u,,v, ,n), u EN*, n,....,n, €N with the following
signification : a derivation of the configuration # in maximally parallel
mode 1s obtained by applying rules #;,..., 7, , respectively n,,...,n, times, and
- APPLY (wv,u,,v,,n,...,u ,v, ,n) denoting that vis obtained fromu by
applyingrules #,...,7, , respectively n,,...,n_ times.

Remark that MAX PARAL (yu,,v,.0,...,u,,v, ,0)represents that u is a

terminal configuration of /7.
11

In order to keep the number of configurations under control we will asume
that each component of a configuration cannot exceed an established upper bound,
denoted MAX, and each rule can only be applied for at most a given number
of times, denoted SUP.

We will use the following notations :

—u < MAX,if all the components of the configuration # doesn't exceed M AKX;
—(n,...,n_)< SUPif n, < SUPforeveryi=1,m;
~ N, ={uEN"|usMAX}
-~ Ngp=1imn,...n, JEN" |(n,...,n)< SUP}.
The systemis assumed to crash wheneveru < MAX or (n,....n_)< SUP does

not hold.

Obviously, the normal termination occurs when u <= MAX and (n,,...,n,) < SUP

and no rule can be further applied.

12

The corresponding Kripke structure M = (S, H,1, L) to the P-system /1 1s defined
as follows: S = N}, U{Halt,Crash}, Halt,Crash ¢ N, ., Halt = Crush, [=w
and the left- total relation H 1s defined by:

~(u,v)EH, uvEN,, . if A(n,...,n JEN \{(0,...,0)} such that

MAX PARAL(yu,,v,,n,,...,u,,v.,n_) N APPLY (uv,u,,v,n,..,u_,v_,n_);
—(u,Halt)c H, uEN]’fMX it MAX PARAL(yu,,v,.,0,...,u,,v ,0);

(no rule can be further applied)

—(u,Crash)€H, ue N}, if I(n,,...,n JEN ., vEN* such that

~((n,....n)< SUP Av = MAX)N MAX PARAL(yu,,v,,n,,...,u, v _,n_) A
APPLY (wv,u,,v,,n,...u, ,v_,n_),

—(Halt Halt)c H,

—(Crash,Crash)E H.

13

" S
A refinement

We will try now to give some ideas about modeling a P system using the corresponding
Kripke structure. We will use again a 1 - membrane P system I1 = (V, u, w, R) with rules

of the formu, = v..

First, we modify theset of states, S = N},,, U {Halt,Crash},in order to avoid a state

explosion by introducing one single state for all the values from N, ,, denoted by Running.
Hence, the Event - B model will have the set of states S = {H alt, Crash, Running}

We see this second model as a refinment of the first. We have to add :
—a variable n, foreach rule , € V showing the number of applications of it;
—one variable state € S, for the current state of the model;
— the two constants M AX and SUP and the set of states and for this we will need a context

All the events introduced before has to be refined and happens in the state Running.

In order to finish our refinement we have to model :
- the transition from the state Running to the state Crash and

- the transition from the state Running to the state Halt

14

"
We consider that the transition from Running to Crash happens when we can
still have objects to consume using some rule, but if we do that we exceed the upper
bound for a rule counter.
For our previous example, we have the new event :
event RunToCrash: when state = Running A
(s>0 an, =SUP)v(a>0an,=SUP)
vV(b>0nA(n,=SUPvn,=SUP)))
then state = Crash
end.
The transition from Running to H alt will be considered when we are
reaching a terminal configuration. Our example corresponds the followingevent :
event RunToH alt: when state = Running ns=0na+a, =0Ab+b, =0
then state = Halt
end. Rodin

The other events are easy to refineand so the refinementis done.

15

" S
Linear Temporal Logic (LTL)

Linear temporal logic (LTL) is a modal logics with special operators for time.
An LTL formula consists of atomic propositions, boolean operators (=, A, v, —, =)
and temporal operators (X, U, G, F). The meaning of the temporal operators are the
following:
— X a: ahas to be true in the next state (X = “next™)
—aUb : a has to hold from the current state up to a state where b is true (U = “until”)
— (G :a condition has to hold at all states of a path (G = “always”)
— F':a condition eventually holds at some time in the future (F' = “eventually”)

In LTL the only path quantifieris 4 (forevery path),i.e. we can describe
only one path properties per formulaand the only state subformulas
permitted are atomic propositions.

The BNF definition of LTL formulais given by :
D ::=true| falsea€E AP |~ DP | P, A D, | D, VD, | P, =D, |D, =D, | DO UD, |

X0 | GD | Fd
16

" JEE
On P system testing using model
checking

Model checking is a verification technique that explores all possible system
states in a brute force manner. The idea of testing with model checkers is to interpret
counterexamples as test cases.

For a I-membrane P system /7 = (V, u, w, R) and its equivalent Kripke structure
M = (S,H,I,L)we can define, for example, the following coverage criteria :

A finite path (s,,...,s,) in M 1s called a test case which coversa rule 7; if there
ol €N} ,, and exists (n,...,n, JEN% ., n, = 1such that
MAX PARAL(s,uy,v,,n,,...,u,,v,.n,) N APPLY(s, s

In this case a finite prefix of a counterexample for the L7L specification

exists p < n-1for which, s S
p+1,u1,vl,nl,...,um,vm,nm).

G((n, = 1) A (state = other)) considered fora model of M is a test case which covers
rule ;.

For more details see Ipate, F., Gheorghe, M., Lefticaru,R., Test Generation from
P Systems Using Model Checking, 2010.

17

I
Conclusions and future work

m \We made this presentation a simple model of P
system using Event-B syntax.

m Some ideas about testing P system using model
checking were presented.

m Our future work will concentrate on modeling
more complicated P systems.

m \We plan to use the model checker ProB on this
models to generate test cases

18

Model a P system like this...

1 Gﬁ(

cd ‘)\ 1 ¢ — (d, out

b—b

a— (a,ing)

D\

ac — 0

(LacC

N

c— (¢, iny)
¢ — (b,iny)
dd — (a,in,)

> a— (a,ing)b

o

A dream? | hope not...

19

Event EndOfPresentation:
when

“you were paying attention to my presentation”

Thanks!

20

