UNIVERSITY OF

Southampton

Rodin User and Developer Workshop

School of Electronics
and Computer Science

Generating Code from Event-B
Using an Intermediate Specification Notation

Andy Edmunds - ae02@ecs.soton.ac.uk

Michael Butler - mip@ecs.soton.ac.uk

UNIVERSITY OF

Southampton

Between Abstract Development and Code

School of Electronics
and Computer Science

Abstract Event-B Development

‘implements’ refines

_ o translate
Intermediate Specification

Implementation Refinement

A

translate

‘observational equivalence’

Implementation Source Code

UNIVERSITY OF

Southampton

Concurrent Processes, Sharing Data

School of Electronics
and Computer Science

- We can specify processes with a non-atomic operation, for implementing:
Shared memory systems
Thread-like behaviour
Interleaved atomic executions

A ‘main’ process which can provide an execution entry point

- We share data between processes with ‘monitor-like’ constructs
Atomic procedure calls (implementation provides mutex access)

- Can incorporate object-oriented features

S HJN VERSITY OF
outhampton An Example Process Specification

School of Electronics

and Computer Science

ProcessClass Proc {
// encapsulated attributes
Buffer buff, Boolean isWriter, Channel c, Integer id, Integer tmpBuffSz, Integer tmpDat

// initialisations

Procedure create(Integer pid, Buffer bff, Boolean isWritr, Channel ch){
id:=pid || buff:=bff || isWriter:=isWritr || c:= ch || tmpBuffSz:=-1 || tmpDat:=-1

}

// The process behaviour
Operation run(){
pl1: if(isWriter=TRUE) then
tmpBuffSz:=buff.getSize() andthen
p2: c.getWChan(id, tmpBuffSz);
p3: while(tmpBuffSz>0) do tmpDat:=buff.remove() andthen
p4: c.add(tmpDat);
p5: tmpBuffSz:=tmpBuffSz-1 endwhile ;
p6: c.freeWChan() endif
else c.getRChan(id) andthen
p7: tmpBuffSz:=c.getWriteSize();
p8: while(tmpBuffSz>0) do tmpDat:=c.remove() andthen
p9: buff.add(tmpDat);
p10: tmpBuffSz:=tmpBuffSz-1 endwhile ;
p11: c.freeRChan() endelse

S HJNWERS TY OF
outhampton An Example Monitor Specification

School of Electronics
and Computer Science

MonitorClass Channel{
// encapsulated attributes
Integer capacity, Integer[5] buff, Integer head, Integer tail, Integer size, Integer rPID,

Integer wPID, Integer writeSize

// initialisations
Procedure create(){
head:= 0 || tail:= 0 || size:= 0 || capacity:= 5 || rPID:= -1 || wPID:= -1 || writeSize:= -1 }

// add a value to the tail
Procedure add(Integer val){
when(size<capacity){ buff[tail]:= val || tail:= (tail+1) mod capacity || size:= size+1} }

// remove and return the value from the buffer head
Procedure remove(){
when(size>0){ return:= buff[head] || size:= size-1 ||
head:= (head+1) mod capacity}
}: Integer

UNIVERSITY OF

Southampton

Non-atomic Operations
School of Electronics
and Computer Science

- Allow specification of sequences of interleaving atomic clauses
using ‘;’ operator to define points that allows interleaving

- Example non-atomic operation

op & labell: x:=y ;label2: y:=z

- A Non-atomic clause:

Can have one or more labelled atomic clauses
(each clause requires a unique label)

Does not use synchronization constructs in the specification

S HJNWERSFTY OF
outhampton Labels as Program Counters

School of Electronics

and Computer Science

- Program Counters for a process, pc = { label1, label2, term }
(‘term’ is the terminating counter of a process)

- The clause op 2 labell: x =y ;label2: y:=z
has Event-B semantics,

WHEN pc = label1l THEN x :=y || pc := label2 END

op 11 2
WHEN pc = label2 THEN y := z || pc := term END

1>

op_12

UNIVERSITY OF

SOUthaumn A Quick Look at Non-atomic Operation Syntax

School of Electronics
and Computer Science

Our formal definition uses the Guarded Command Language

NonAtomic ::=
NonAtomic ; NonAtomic
| NonAtomic [| NonAtomic
| do Atomic [; NonAtomic] od
| Atomic

Atomic ::= Label: « Guard — Body

omitted from the specification when true.

Body ::= Assignments | Call

UNIVERSITY OF
Southampton

Mapping to Event-B (Sequence)
School of Electronics
and Computer Science

- Translation Function
TNA € NonAtomic x Label x PName — IP(Events)

(where PName distinguishes the process by name, and Label is the exit label)

- Translation rule for a sequential clause

< nat; na2, 2, P>TNA

aN

<nat,l1, P>™AU < na2 12, P> TNA

We find the exit label for na1 using a function sLabel(na2)
We define: sLabel € NonAtomic — Label

and, sLabel(na2) = I1

S HJNWER.SFT'T' OF
outhampton Mapping to Event-B (Labelled Atomic)

School of Electronics

and Computer Science

-Translation function TLA for actions (Base case)

TLA € Atomic x Label x PName — P(Event)

- Translation rule for a guarded atomic action

<ll:<xg—ap,2,P>TA

aN

I1,= WHEN P, =/TAg
THEN a|| P, := 12
END

where P, is the program counter of Process P

UNIVERSITY OF

Southampton

The Branching Non-atomic Clause

School of Electronics
and Computer Science

- A simple branching construct

[1:1f(g,) then a, [andthen na,] endif
else a, [andthen na,] endelse

syntactic sugar for:
[1:< g,— a, >[;na,]

0/1:< =g, —> a, >[; na,]

- Translation rule for a branching clause

< nal[na2, I2, P>TNA

as

<nat, 2, P>™AU < na2 12, P> TNA

this results in an event per branch e.g. 11_true, [1_else

UNIVERSITY OF

Southampton

The Looping Non-atomic Clause

School of Electronics
and Computer Science

- The non-atomic loop construct (interleaving allowed after each iteration)
I1: while(g) do a endwhile

syntactic sugar for:

do/1:< g— a > od

- Translation rule for a looping clause

<do/1:<xg—ar od, 2 P>TNA

as

<ll:<xg—arv, 1,P>TMAU<[1:a~g— skip >, 12, P> TLA

- Also we have,
I1: while(g) do a andthen na endwhile

UNIVERSITY OF
Southampton

Procedures

School of Electronics
and Computer Science

- A procedure definition:

Procedure = LVar x Guard x Action x T

where LVar is a list of local variables (including formal params),
and T is the return type if applicable

- A procedure definition of Monitor m with name pn can be written,

pn(foy, ..., o) {<g,—>ax}: T

with formal parameters fp,, ..., fo,

- For use above we have a sugared form of conditional waiting construct,

when(g,){a} =2 <«g,—>av

UNIVERSITY OF

Southampton

Procedures

School of Electronics
and Computer Science

- A call is written

[v:=] m.pn(ap,, ..., ap,)

- The translation rule for TLA is defined as:

<ll:<xg.—>[v:=]mpn(ap,, ..., ap.) >, 12, P>TA

as

I1,=WHEN P, =11 A g foy,....T0o \ @py,....apc I A e
THEN 4 fo,,....Io\ apy,....ap J[return\ v] || B = 2
END

UNIVERSITY OF

Southampton Adding 0-O Features (OCB)

School of Electronics

and Computer Science

- ProcessClass and MonitorClass Specification
User invokes create method to instantiate classes
Ease of mapping to OO code (Java in our case)
Potential to link with UML-B

- In the Event-B mapping:

Model instantiation, similar to UML-B
Variable renaming avoids name-clashes

UNIVERSITY OF
Southampton

Mapping to Java 1.4

School of Electronics
and Computer Science

-Many restrictions on OCB

To ensure mutual exclusion
To avoid deadlock due to nested monitors, resource contention

- Parallel to sequential semantics

- Conditional waiting using the when construct

Procedure remove(){ public synchronized int remove() {
when(size>0){ int initial_head = head,;
return:= buff[head | || size:= size-1 || try{
head:= (head+1) mod capacity} while (!(size > 0)){
}: Integer wait();

initial head = head;

} catch (InterruptedException e) {
¥, size = size - 1;

maps to head = (initial_head + 1) % capacity;
notifyAll();
return buff[initial head];

UNIVERSITY OF

Southampton

School of Electronics Mapplng to Java 15

and Computer Science

- Transactional OCB — relaxes restrictions

Access multiple shared objects in an atomic clause

Direct access to shared objects,
or multiple procedure calls to shared objects, in a clause

Use of lock manager to acquire locks

- Add Event-B features:

Atomic constructs for implementation level

Sequence operator for actions
Atomic Branch and Loop

UNIVERSITY OF
Southampton

School of Electronics
and Computer Science

Future Work

@ SharedBufferz.och &2 @ CommEuffer 1 @ ml \I @ r
F[‘:, Resource Set

= @ platform:fresourcefOCBModels)SharedBuffer2 . .och
=4 Main Class CommBuffer

""" 4 SVar rBuffl

""" 4 Svar rBuffz

""" 4 SWar wBuFF1

----- 4 SWar wBuff2

""" < S¥ar chan

""" 4 SWar wProcl

""" 4 SWar wProcZ

""" 4 Svar rProcl

""" 4 S¥ar rProcz

B4 SWar v

-4 Process Class Proc

""" 4 Variable buff

""" 4 Variable iswriter

""" 4 variable ¢

""" 4 Wariable id

""" 4 Variable tmpBuffFsz

""" 4 Variable tmpDat

-4 IF Clause isWriter=TRUE

B4 Atomic pl

o <+ Procedure Call getSize

El-4 OCE Sequence

E| < Atomic p2

EI‘\'-* Pracedure Call get'w'Chan

: """ <4 Argument Yalue id

e Argument Yalue tmpBuffaz

E| 4 OCB Sequence
E| <+ while Clause trmpBuffSz=0
B4 Atomic p3
"'*¢* 2B Sequence
-4 Atomic pa

- 4 Else Clause

#- 4 Create Procedure

- 4 Manitor Class Buffer

[4 Monitor Class Channel

- < OCE Sequence

Selection] Parent | Lisk | Tree | Table | Tree with Columns |

é Tasks | = Properties 53 [3_\ Problems} (n Progress} E_l] Histe

Propett Yalue

NuII Handler IS TERMINATE
Procedure Name U= getSize
Target I= buff

- Develop tools further

Prototype tool has limited functionality:

Improve Rodin integration

link between abstract development and
implementation refinement

Improve static checking

- Map to other languages, SparkAda etc.

- Add text editor
- Integrate with UML-B

- Handle large Event-B implementation refinements

