
Safety and Security
Case Study
Experiences with
Event-B and Rodin
Rodin Workshop, 8 June 2021

Jonathan Hammond

2© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Agenda

Introduction

▪ Capgemini engineering

▪ Network Rail

▪ HICLASS

▪ Event-B tooling

Security Case Study: Tokeneer

▪ Case study description

▪ Model overview

▪ Results

Safety Case Study: ERTMS & RCA

▪ Case study description

▪ Model overview

▪ Results

01

02

03

Summary of Language & Tooling Challenges

▪ Language

▪ Scalability

▪ Test generation

▪ Instantiation

04

3© Capgemini 2021. All rights reserved |

Introduction

4© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021 4© Capgemini 2021. All rights reserved |

Capgemini and Altran join forces in
Engineering and R&D to create the

global digital transformation leader for
industrial and tech companies

4

30+
countries

52,000+
people

5© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Network Rail Target 190plus

Network Rail owns, operates
and develops Britain’s
railway infrastructure

Target 190plus is an R&D
programme on signalling
sustainability, aiming to
reduce whole life costs &
enable ERTMS (ETCS)
long-term deployment

1 of the 29 Target 190plus
projects (DMAP) is assessing
possible formal methods use

6© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

DMAP: Data & Mathematical Assurance Process

DMAP aims to develop a process and method to:

▪ Allow some mathematical assurance of future signalling systems

▪ Reduce risks of system failures (& thus also cost / time issues) by earlier fault identification

▪ Achieve more automation of assurance activities

Capgemini is supporting Network Rail on DMAP by:

▪ assessing candidate formal methods

▪ proposing a process for DMAP

▪ establishing how to integrate DMAP into wider engineering & procurement context

Event-B was shortlisted as a candidate method for future Network Rail use

Capgemini did an ERTMS-related case study using Event-B

7© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

HICLASS (High-Integrity, Complex, Large, Software and Electronic Systems) is a 4-year
industry-led research project funded by InnovateUK to “enable UK industry to build and
support the most complex, connected, cyber-secure avionic systems in the world”

It follows on from the SECT-AIR project, which looked at reducing barriers for using formal
specification (see ABZ’18 paper: ABZ Languages and Tools in Industrial-Scale Application)

Within SECT-AIR in 2017, Capgemini did an Event-B evaluation with mixed results

Further tools development (notably CamilleX) was underway but not yet available

In HICLASS in 2021 we’ve revisited the SECT-AIR Event-B evaluation, using the latest tools

Key driver for Capgemini is to get more value from formal specification effort

▪ do current tools give more validation (e.g. animation) & verification (e.g. test generation) support?

HICLASS

Acknowledgement: This work was supported by the HICLASS project,
funded by the Aerospace Technology Institute and Innovate UK, as

project number 113213.

8© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

For both case studies we primarily used Rodin with the following additional plug-ins:

▪ Atelier-B and SMT solvers for additional proof capability

▪ UML-B support for class diagrams and state machines

▪ CamilleX primarily for model structuring using machine inclusion

▪ ProB for animation support and some model checking

▪ Scenario Checker for saving and replay of scenarios

▪ Event-B Theory Plug-in to extend the notation (for sequences & optionality)

For the 2nd case study we also used the standalone ProB 2 UI

▪ for animation, model checking and test generation

Event-B Tooling

9© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Safety Case Study:
ERTMS & RCA

10© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

ERTMS is well-known European standard for
interoperable advanced railway signalling

EULYNX is standardising signalling interfaces

Reference CCS Architecture (RCA) is a new
architecture based on ERTMS & EULYNX for
modular standard products

Our DMAP case study requirements combine

▪ Hybrid ERTMS case study (from ABZ 2018)

▪ ASTRail ERTMS+ATO comms case study

▪ Using RCA components as the subsystems

▪ Generic track layout with points & crossings

Aim is not to do a complete formal model,
but to cover enough to enable Event-B
evaluation against Network Rail’s criteria

▪ Need a system of systems to assess criteria

Safety Case Study Description: ERTMS & RCA

RCA overview – showing main components

11© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

CamilleX machine inclusion splits model into more manageable pieces and permits reuse

Model Overview: Structure

*

BasicTypes_m0

MovingBlock_m0

ATOVehicle VehicleLocator_m0
VehicleSupervisor_

m0
SafetyLogic_m3

StateVSS_c2ATOVehicle_Statemachine_

ATOState

MsgIF_Common_

m0

MsgIF_m0

VStoSL_IF_

m0
SLtoVS_IF_m0VLtoVS_IF_m0VStoVL_IF_m0

VStoATOV_IF_

m0

Key:

CamilleX

machine

Event-B

machine

Machine includes

another machine

Machine sees

context

System of systems level

machine, which combines

all lower level machines

1 machine per

subsystem from the RCA

1 machine per interface

between RCA subsystems

Common interface

definition for 1:1 interfaces

(1 sender & 1 recipient)

Common interface

definition for n:1 interfaces

(n senders & 1 recipient)

Context
Note: not all contexts

are shown

12© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Machine inclusion is simple to specify (we use prefixes to avoid any name clashes)

Model Overview: Structure – CamilleX Machine Inclusion

machine MovingBlock_m0

sees
BasicTypes_m0
StateVSS_c2
ATOVehicle_Statemachine_ATOState

/* include machines for all subsystems */
includes VehicleSupervisor_m0 as vs
includes VehicleLocator_m0 as vl
includes SafetyLogic_m3 as sl
includes ATOVehicle as av

/* include machines for each interface
between subsystems */

includes VStoSL_IF_m0 as vsToSL
includes SLtoVS_IF_m0 as slToVS
includes VStoVL_IF_m0 as vsToVL
includes VLtoVS_IF_m0 as vlToVS
includes VStoATOV_IF_m0 as vsToATOV

13© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Some safety properties may be captured as invariants, such as:

inv21: ∀ t1, t2 · t1 ≠ t2 ∧ {t1, t2} ⊆ dom (trainMA)

⇒ pathLoc [{trainMA (t1)}] ∩ pathLoc [{trainMA (t2)}] = ∅

The safety property breaks down as follows:

∀ t1, t2 · t1 ≠ t2 for all items t1 & t2 that are different

∧ {t1, t2} ⊆ dom (trainMA) and both t1 & t2 are trains with current Movement Authorities

⇒ it is true that

pathLoc [{trainMA (t1)}] the set of locations on t1’s Movement Authority (MA)

∩ that are common with

pathLoc [{trainMA (t2)}] the set of locations on t2’s MA

= ∅ is empty (i.e. there is no overlap between the MAs)

Model Overview: Example Safety Property

14© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Application is key rail concept:
configuring generic systems /
products for a particular layout

Model includes a generic track
layout: segment & node graph
models track topology, gradients
etc defined in an Event-B context

Graph can be instantiated for a
specific rail scheme / project

[Aside: segment & node model is
reused from Z spec we did for
British Rail in 1994! See FME’94]

Model Overview: Track Layout UML-B Class Diagram

15© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Model Overview: ATO UML-B State Machine

Automatic Train Operation
(ATO) is autonomous driving

State machine covers: when
ATO is available, driver
engagement / deselection &
various error cases

States are enumeration type
values in Event-B model and
machine transitions are names
of Event-B events

16© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Machine inclusion is vital to be able to structure a large model into digestible pieces

▪ Also enables subsequent independent refinement of subsystems (out of scope for case study)

Class diagrams are very useful for presenting data models that involve entities / objects

Similarly, state machines – where applicable – really aid understanding of event sequences

Autogenerated Event-B integrates well with user Event-B, e.g. invariants between classes

Theory plug-in enabled definition of key notation not in Event-B (e.g. generic sequences)

Proof tools generally worked well (as expected is labour & specialist skill intensive)

Animation is great for both validation (with SMEs) & verification (by specifiers) but …

Results: Aspects that worked well

17© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

To fully specify behaviour to enable proof may require properties that cannot be evaluated

▪ Important as evaluation is a pre-requisite for all model checking analysis, including animation

▪ Property may be as simple as function totality (where it’s impractical to list all function values)

Cannot evaluate the trackside train detection (TTD) topological connectedness property:

covers_contiguous:

∀ t, s1, s2 · t ∈ TTD ∧ s1 ≠ s2 ∧ {s1, s2} ⊆ covers [{t}]

⇒ (∃ ss · ss ∈ seq (Segment) ∧ ss ≠ ∅ ∧ s1 = ss (1) ∧ s2 = ss (card (ss))

∧ ss ∈ ℕ ⤔ covers [{t}]

∧ (∀ i · {i, i+1} ⊆ dom (ss) ⇒ ss(i) ↦ ss(i+1) ∈ segmentConnected))

// All the segments that a TTD covers are connected

We specify contexts/machines without such properties & include in proof-only versions

▪ illustration of how this works, in terms of model structure, is given with the security case study

Results: Challenges – proof & model checking tension

18© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Results: Challenges – valid model instantiations

Defining an instantiation, e.g. for animation, can be
difficult as it may be hard to:

▪ predict how much instantiation is needed for the tools
to be able to evaluate

▪ understand from an error which parts of the model
need to be further defined/constrained

▪ define instantiated values that satisfy all the model
constraints/properties

▪ ensure the instantiation is rich enough to cover
scenarios/cases needing analysis

Last 2 points are particularly domain/model specific

The track layout was intricate to get correct; many
constants have complex relationships

▪ domain specific tooling would help, e.g. autogenerate
instantiation from graphical track layout

Above simple track layout was used for a
model instantiation, took several attempts

to get all the detail correct

19© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Machine inclusion enables specifications of separate pieces to be combined into a whole

We think a natural specification structure is to have a machine per subsystem

▪ common for whole system level (atomic) events to involve changes in multiple subsystems

▪ we’d like to specify each subsystem change separately & combine to define whole system effect

However, Event-B limitations greatly constrain how different events can be combined:

▪ event synchronisation in machine inclusion is effectively parallel composition of all actions

▪ limited data flow between events; can use guards to equate parameters from different events

So cannot combine events where the action of one depends on the action of another

This reduces atomicity/increases fragmentation resulting in:

▪ an increased number of events

▪ more difficulty understanding how events fit together; what permitted sequencing of events is

▪ some desired invariants not holding, as they’re only preserved once event sequence completes

Animation helps, but we’d much prefer to avoid the fragmentation

Results: Challenges – structuring complex events

Security Case
Study: Tokeneer

21© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Demonstrator project for the US
NSA; showed practical to achieve
security std with formal methods

NSA open sourced the project in
2008; available to all researchers

SECT-AIR did (partial) Tokeneer
Event-B model in 2017

HICLASS updated & expanded
model 3.5 years later in 2021

Tokeneer has workstation network
in a protected enclave

Access granted via biometric token
& fingerprint reader

Security Case Study Description: Tokeneer

Protected Enclave

ID Station
(TIS)

Fingerprint
Reader

Display
Token
Reader

Enrolment
Station

Certificate
Authority

(CA)

Attribute
Authority

(AA)

Token
Reader

Work-
station

Work-
station

Work-
station

Admin

Door

Alarm

22© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

IDStation is the
system to specify

▪ 12 subsystems

▪ 8 modelled for case
study

RealWorld models
key environment
inputs (sensors) &
outputs (door latch
and alarm)

Model Overview: Structure

*

CommonTypes

MoreCommon

UserToken

RealWorld

ControlledWorld

Context

CamilleX machine

Event-B machine

Context extends another context

Machine includes another machine

Machine sees context

MonitoredWorld

AuditLog

IDStation

Tokeneer

Internal_Statemachine_status

Internal_Statemachine_enclaveStatus

EnrolProperties

CertificateProperties

Config DoorLatchAlarm FloppyFinger

KeyStore Internal

23© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Model Overview: Certificate Types UML-B Class Diagram

Tokeneer has quite a rich certificate
model

Certificates identify users & define
what users are authorised to do

24© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Model Overview: User Entry status UML-B State Machine

Key state machine showing user entry
process

25© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Great deal of consistency in our experiences with both case studies:

All the positive points from the ERTMS case study apply equally to Tokeneer

2021 Tokeneer model is notably more successful than 2017 version, main reasons are:

▪ machine inclusion giving needed structure

▪ UML modelling also adding structure & making specification more accessible

▪ completing an animation of the model (2017 work struggled to find a useable instantiation)

▪ plug-in compatibility issues impacted work in 2017, much less of an issue in 2021

▪ more substantial proof work completed (due to needing less time working other issues)

Also true that the challenges affecting the ERTMS case study apply to Tokeneer as well

Results: Aspects that worked well

26© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Like ERTMS, Tokeneer has
context elements too complex
for model checking
▪ Time model within fn parameter

Figure shows extra contexts &
machines needed to fully
specify properties for proof
▪ names end ‘_Proof’

▪ proof contexts include only the
missing properties

▪ proof machines see the proof
contexts to generate models
with all required constraints

▪ proof machines have to list
events too (but using CamilleX
‘synchronises’ avoids need to
duplicate event contents)

Results: Challenges – proof & model checking tension

*

CommonTypes

MoreCommon

UserToken

RealWorld

ControlledWorld

Context

CamilleX machine

Event-B machine

Context extends

another context

Machine includes

another machine

Machine sees context

MonitoredWorld

AuditLog

IDStation

Tokeneer

Internal_Statemachine_status

Internal_Statemachine_enclaveStatus

EnrolProperties

CertificateProperties

Config DoorLatchAlarm FloppyFinger

KeyStore Internal

MoreCommon_ProofCertificateProperties_Proof

IDStation_Proof

Tokeneer_ProofTokeneer_Proof

IDStation_Proof

27© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Figure shows the extra
contexts & machines needed
to define a model instantiation

▪ names end ‘_Anime’ as main
purpose is to support animation

▪ extra contexts simply extend
those to be instantiated

▪ have anime versions of both
Tokeneer & IDStation to allow
animation at different levels

▪ the instantiated machines
refine the original ones, to
preserve behaviour, whilst also
seeing the anime contexts

▪ so no duplication between
original and anime models

Results: Challenges – valid model instantiations

*

CommonTypes

MoreCommon

UserToken

RealWorld

ControlledWorld

Context

CamilleX machine

Event-B machine

Context extends

another context

Machine includes

another machine

Machine sees context

MonitoredWorld

AuditLog

IDStation

Tokeneer

Internal_Statemachine_status

Internal_Statemachine_enclaveStatus

EnrolProperties

CertificateProperties

Config DoorLatchAlarm FloppyFinger

KeyStore Internal

MoreCommon_AnimeCertificateProperties_Anime

Machine refines

another machine

CommonTypes_Anime

IDStation_Anime

Tokeneer_Anime

28© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Results: Challenges – valid model instantiations

Like ERTMS case study, defining a valid instantiation for Tokeneer proved tricky

▪ ProB plug-in error reporting could be unhelpful, but notably better (more specific) with ProB 2 UI

For Tokeneer it’s relationships between certificate types and tokens that’s complex

▪ as with track layout for ERTMS, domain/model specific tooling would address this

Is the fact that both case studies had this issue bad luck or indicative of general issue?!

▪ certainly true that both case studies have complex configuration data

29© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

One limitation with the Event-B model iUML-B generates for classes is a lack of
identification between a class instance and the instance’s attribute values

There are at least a couple of different ways of doing this:

▪ Value semantics: two class instances are identical if their attributes have the same values, so the
identity of an instance is equivalent to the combination of all the values of the attributes of that
instance

▪ Reference semantics: each instance has an identity and different instances, with different identity
values, can still have all the same attribute values

Capturing this semantic equivalence was needed in Tokeneer to ensure all the desired
properties are provable

▪ UML-B’s flexibility allowed us to add the missing properties manually, would be nice to automate

▪ we use value semantics – to match original Tokeneer Z spec – although where needed Z spec
includes explicit identity attributes within classes (modelled in Z as schema types)

Results: Challenges – class identity vs attribute values

30© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

ProB supports LTL and CTL (but was not yet in ProB 2 UI), useful for liveness properties

▪ we think CTL likely to be more useful for the types of specs we write

For the user entry state machine want to show states are reachable
▪ as no CTL in ProB 2 we wrote LTL: G ({in_status /= gotUserToken}) expecting a counterexample

▪ initially model checking gave no results

▪ with a restructuring of one event some properties (including above one) were correctly analysed

▪ later instantiation change (slightly larger set) reverted model checking to being unsuccessful

▪ counterexample for above property needs event sequence of length 6 (including initialisation)

Clearly model checking properties is fragile to how spec written (combinatorial explosion?)

State machine was fully animated with same instantiation tried for property verification

Results: Challenges – property verification model checking

31© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Results: Challenges – test generation

<test_case id="1" targets="[ReadUserToken]">
<global>

<step id="1" name="INITIALISATION">
<value name="fi_currentFinger">fptry1</value>
<value name="SCREENTEXT_value"><set><pair>…

</step>
<step id="2" name="PollFloppy">
<value name="fl_floppy">floppy2</value>

</step>
<step id="3" name="ReadEnrolmentFloppy" />
<step id="4" name="ValidateEnrolmentDataOK">
<value name="ks_enrolId">enrolId2</value>

</step>
<step id="5" name="PollUserToken">
<value name="ut_userToken">tokEnt4</value>

</step>
<step id="6" name="ReadUserToken" />
<step id="7" name="BioCheckRequired" />

</global>
</test_case>

Had more success with test case generation
▪ on right is 7 step event sequence that covers

several user entry state machine transitions
▪ first 5 steps form a counterexample to LTL

property on previous slide
▪ again used same common instantiation

Not clear why LTL failed but test succeeded?

Test cases requiring longer event sequences
were not possible to generate
▪ guess due to exponential search space growth

Test case auto-generation is highly desirable
▪ takes a lot of manual effort

32© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Some notational features of Event-B require more work than we’d like, for example:

No specific enumerated type syntax

▪ yes can model using partition, but can be bulky & requires more work by both specifier & reader

Sequences and optionality

▪ concept of ordering (sequences) is used frequently, as is optionality

▪ Theory plug-in allowed us to address this (with potential risk of tool/plug-in compatibility issues)

Derived state – i.e. state whose value is determined by invariant

▪ Event-B’s use of actions for dynamic behaviour means any change must be explicitly stated

▪ however, derived state can be very useful to simplify understanding and avoid the need to
repeatedly state the same derivation

▪ e.g. Tokeneer Z spec invariants derive state variables currentLatch and doorAlarm, current latch
and alarm status are referred to in various places

▪ in Event-B we can state the invariants, but have to write explicit actions too for any updates
(at least proof support means that if we get any updates wrong then there’ll be a proof failure)

Results: Challenges – detailed notational issues

Summary of
Language &
Tooling Challenges

34© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

We like black-box specifications where all the system behaviour resulting from a single
environmental stimulus can be specified as an atomic event / operation / set of actions

Our impression is a lack of structure for large / complex events forces event fragmentation

▪ so whole system behaviour for single stimulus gets split into multiple events (unless specified in a
monolithic single machine)

Also some more detailed notational issues

▪ such as derived state

Challenges: Language

35© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

As we discuss in our ABZ 2018 paper, a major issue for formal specification of
large/complex systems is scalability

▪ Very large, successful formal specs are possible (e.g. iFACTS Z spec, see ABZ’18), but only tools
we’ve found workable at that scale are document generation & type-checking

Both our ERTMS and Tokeneer case studies were successful, but we are unsure if similar
results are achievable with full specifications (especially for ERTMS)

Machine inclusion expands to 1 flattened Event-B machine; possible tool resource issues:

▪ Any limits on number of variables, invariants or events in 1 machine?

▪ Checking instantiations prior to animation

▪ Evaluating event guards to determine event availability in a given state

▪ Number and/or size of instantiations needed to cover all scenarios needing analysis

▪ Event sequence combinatorial explosion for model checking

Refinement meant to manage scalability but key properties may rely on less abstract detail

▪ especially in a system of systems context

Challenges: Scalability

36© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Combinatorial explosion of possible event sequences inevitably limits sequence lengths
that are practical to analyse / model check

To break this limitation, why not allow user to specify point to start searching from?

▪ user could specify initial event sequence (& parameter values)

▪ tool would then search from state resulting from applying user input

Such an approach could give full test coverage for the Tokeneer user entry state machine

▪ tool can already cover first few states

▪ feeding that back as initial sequence(s) to tool would enable coverage of next few states etc

Challenges: Test generation

37© Capgemini 2021. All rights reserved |Safety and Security Case Study Experiences with Event-B and Rodin | Jonathan Hammond | 8 June 2021

Instantiation clearly vital to unlock potential of Event-B

▪ as pre-requisite for animation, property verification, test generation etc

We have limited experience generating instantiations for animation, model checking etc

▪ much to learn about how much instantiation to define & impact of spec styles on ease of doing it

▪ can others’ experience be captured as guidance?

Was time consuming and error prone to do

▪ model specific tooling would help, such as converting track layouts to model sets

▪ not sure whether there’s potential for more generic tooling / framework?

Think tooling could assist with managing/generating multiple context/machine versions

▪ especially with proof versions too (if certain properties/definitions too difficult for evaluation)

Challenges: Instantiation

Q&A

Capgemini is a global leader in partnering with companies to transform and manage
their business by harnessing the power of technology. The Group is guided everyday
by its purpose of unleashing human energy through technology for an inclusive and
sustainable future. It is a responsible and diverse organization of 270,000 team
members in nearly 50 countries. With its strong 50 year heritage and deep industry
expertise, Capgemini is trusted by its clients to address the entire breadth of their
business needs, from strategy and design to operations, fuelled by the fast evolving
and innovative world of cloud, data, AI, connectivity, software, digital engineering
and platforms. The Group reported in 2020 global revenues of €16 billion.

About Capgemini

This presentation contains information that may be privileged or confidential and
is the property of the Capgemini Group.
Copyright © 2021 Capgemini. All rights reserved.

Jonathan Hammond

High Integrity Software Expertise Centre
Capgemini UK
22 St Lawrence Street
Bath
BA1 1AN

jonathan.hammond@capgemini.com

Get the Future You Want | www.capgemini.com

http://www.linkedin.com/company/capgemini
http://www.slideshare.net/capgemini
http://www.twitter.com/capgemini
http://www.youtube.com/capgeminimedia
http://www.facebook.com/capgemini

