SEAR: Systems Evolution via Animation and
Reasoning

Andrew Ireland, Maria Teresa Llano and Rob Pooley

Dependable Systems Group
School of Mathematical and Computer Sciences
Heriot-Watt University

Rodin Workshop, July, 2009

Currently

Modelling interface Reasoning interface |_
Mbdel s Failed POs Proof steps

Failure

PO Generator

Auto provers

Our objective

O
OO

A

_| Reasoned modelling interface

Model |ing suggestions,

Proof planning
+
Failure analysis

Tactics

Failed PCs

Auto provers

PO Generator

Proof checker

Proof steps

Specific objectives

- Proof search guided by proof plans.
/7 - Proof failure analysis —> Proof patching.

Proof planning
+

Failure analysis

- Extension of UML-B with activity diagrams.

Proof failure analysis —> UML-B modelling suggestions.
- Invariant generation via animation.

- Anti-patterns.

/

UML-B extension proposal

Extending UML-B

(Statel)S(State2 j :

FORMAL FORMAL
SPECIFICATION ANALYSIS

EVENT-B

Extending UML-B with activity diagrams

FORMAL
ANALYSIS

Activity diagram

Transitions « ccaa-
'

T~ Join

...... Decision

Why activity diagrams?

» Allow the representation of the flow of actions and the
interactions between the elements of a system.

» Contain more detailed information about the behaviour of the
system.

» It is possible the modelling of concurrent behaviour.
» Modelling suggestions in the form of activity diagrams.

» Anti-patterns have already been analysed with activity
diagrams in UML. 1

!M.T. Llano and R. Pooley. UML specification and correction of
object-oriented anti-patterns. ICSEA 2009.

Analysis of anti-patterns in UML-B

Anti-patterns

Anti-patterns are design patterns whose purpose is to document
common bad practices in software design and to suggest solutions
to improve them.

Anti-patterns are not mistakes! they are models that produce bad
consequences like:

» Slower execution times.

» Unnecessary consumption of resources

» Violation of good design principles.

Our purpose: To identify anti-patterns by
reasoning about UML-B designs.

Advantages of analysing anti-patterns in UML-B

» It is possible to identify ineffective or potentially harmful
models.

» They suggest a refactored suitable solution for the problem.

» Having a catalogue of UML-B anti-patterns would equip
UML-B users with knowledge about patterns of models they
should avoid.

» Anti-patterns can be analysed in the design stage.

Modelling suggestions through proof
failure analysis

Proof failure analysis

» Analysis of failed proof obligations.
» Generation of modelling suggestions.
» Modelling suggestions translated into UML-B diagrams.

» Feedback to the user given in the form of UML-B designs
rather than in the form of failed proof obligations or Event-B
code.

Example: The contract net protocol

» Protocol of distributed negotiation process.

» An agent (the initiator) needs to find an agent or groups of
agents (participants) to be in charge of completing a task.

» The initiator calls for proposals from the participants.

» The best proposals are chosen.

» The participants are informed about their rejection or
acceptance.

» The protocol finishes when the task is completed by the
participants.

Acceptance and rejection of messages buggy model

N
[ch=a € accepts] \/ [Ch=a € rejects]

[c= a & acceptR] [cl—:»aErejectR]
b

recejve accepta nce recejve rEjECtIOh
{acceptR := acceptR U {c=all} {rejecth := rejectR U {c=al}

Translation to Event-B

N
[c =a € accepts] \/ [cH=a € rejects]

[c=a & acceptR] [ch=a & rejectR]

receive aCCeptanCe receive rE]ECtI on
{acceptR = BCCEP'ER Ud{ek=al} {rejecth = rejectR U {c = a}}

Event receiveAcceptance = Event receiveRejection =
Any c, a Where Any c, a Where
c — a € acceptS c+— a € rejectS
c — a ¢ acceptR c+— a ¢ rejectR
Then Then
acceptR := acceptR U { c — a } rejectR := rejectRU { c — a }
End End

Proof obligations

N
[c =a € accepts] \/ [cH=a € rejects]

[c=a & acceptR] [ch=a & rejectR]

receive aCCeptanCe receive rE]ECtI on
{acceptR = BCCEP'ER U{cksal} {refectR = rejectR U {c = a}}

Invariant: acceptR N rejectR = () .

Proof obligations

Hypothesis Hypothesis

acceptR N rejectR = 0 acceptR N rejectR = 0

c+—— a € acceptS Cc — a € rejectS

c+— a ¢ acceptR c— a ¢ rejectR

Goal Goal

(acceptR U ¢ — a) N rejectR = 0 acceptR N (rejectR Ucr—a) =0

Reasoned modelling

acceptR N rejectR =

c+—— a € acceptS

c+— a ¢ acceptR

=

(acceptR U c — a) N rejectR = 0

CASE SPLIT

acceptR N rejectR = acceptR N rejectR =
¢ —— a € acceptS c+—— a € acceptS

c —— a ¢ acceptR c —— a ¢ acceptR

c — a ¢ rejectR c — a € rejectR

- v oo -

(acceptR U ¢ —— a) N rejectR = 0 (acceptR U ¢ — a) N rejectR = 0
However if we prove the negation of the goal:

acceptR N rejectR = ()
¢ +—— a € acceptS
c—— a ¢ acceptR
c — a € rejectR

- v

(acceptR U ¢ — a) N rejectR #

Feedback to the user

N

[Ch=a € accepts] \/ [cl=a € rejectS]
[ch=a & acceptR] [cha & rejectR]
[cp—»a & rejectR] [c - a € acceptR]

receive accepta nce receive I’EJECtI on
{acceptR := acceptR U {ch=a}} {rejectR := rejectR U {c >a}}

Automatic invariant generation

Invariant generation via animation

Test generator
AN

AN
Execution traces

Invariant generator

AN
Likely invariants

We are currently studying Daikon as a possible invariant generator
to integrate with Rodin.

Invariant generator integrated with Rodin

Model i ng suggestions

PGs | nformation

Test generator

AN
Tests

K AN
Execution Traces

Invariant generator

AN
Likely invariants

Proof planner
+

Failure analysis

Failed POs

Summary

Our main purpose is to help UML-B users by suggesting changes
to their models trough:

» Proof failure analysis.
» Automatic invariant generation.

» Analysis of anti-patterns.

