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Specific objectives

- Proof search guided by proof plans.
- Proof failure analysis        Proof patching.

Proof planning
+

Failure analysis
- Extension of UML-B with activity diagrams.
- Proof failure analysis        UML-B modelling suggestions.
- Invariant generation via animation.
- Anti-patterns.



UML-B extension proposal



Extending UML-B

Class Class

Class

State1 State2

State3

 FORMAL
ANALYSIS

FORMAL
SPECIFICATION

UML-B

EVENT-B



Extending UML-B with activity diagrams
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Why activity diagrams?

� Allow the representation of the flow of actions and the
interactions between the elements of a system.

� Contain more detailed information about the behaviour of the
system.

� It is possible the modelling of concurrent behaviour.

� Modelling suggestions in the form of activity diagrams.

� Anti-patterns have already been analysed with activity
diagrams in UML. 1

1M.T. Llano and R. Pooley. UML specification and correction of
object-oriented anti-patterns. ICSEA 2009.



Analysis of anti-patterns in UML-B



Anti-patterns

Anti-patterns are design patterns whose purpose is to document
common bad practices in software design and to suggest solutions
to improve them.

Anti-patterns are not mistakes! they are models that produce bad
consequences like:

� Slower execution times.

� Unnecessary consumption of resources

� Violation of good design principles.

Our purpose: To identify anti-patterns by
reasoning about UML-B designs.



Advantages of analysing anti-patterns in UML-B

� It is possible to identify ineffective or potentially harmful
models.

� They suggest a refactored suitable solution for the problem.

� Having a catalogue of UML-B anti-patterns would equip
UML-B users with knowledge about patterns of models they
should avoid.

� Anti-patterns can be analysed in the design stage.



Modelling suggestions through proof
failure analysis



Proof failure analysis

� Analysis of failed proof obligations.

� Generation of modelling suggestions.

� Modelling suggestions translated into UML-B diagrams.

� Feedback to the user given in the form of UML-B designs
rather than in the form of failed proof obligations or Event-B
code.



Example: The contract net protocol

� Protocol of distributed negotiation process.

� An agent (the initiator) needs to find an agent or groups of
agents (participants) to be in charge of completing a task.

� The initiator calls for proposals from the participants.

� The best proposals are chosen.

� The participants are informed about their rejection or
acceptance.

� The protocol finishes when the task is completed by the
participants.



Acceptance and rejection of messages buggy model



Translation to Event-B

Event receiveAcceptance b= Event receiveRejection b=
Any c, a Where Any c, a Where

c �−→ a ∈ acceptS c �−→ a ∈ rejectS
c �−→ a /∈ acceptR c �−→ a /∈ rejectR

Then Then
acceptR := acceptR ∪ { c �−→ a } rejectR := rejectR ∪ { c �−→ a }

End End



Proof obligations

Invariant: acceptR ∩ rejectR = ∅ .

Proof obligations
Hypothesis Hypothesis
acceptR ∩ rejectR = ∅ acceptR ∩ rejectR = ∅
c �−→ a ∈ acceptS c �−→ a ∈ rejectS
c �−→ a /∈ acceptR c �−→ a /∈ rejectR

Goal Goal
(acceptR ∪ c �−→ a) ∩ rejectR = ∅ acceptR ∩ (rejectR ∪ c �−→ a) = ∅



Reasoned modelling

acceptR ∩ rejectR = ∅
c �−→ a ∈ acceptS
c �−→ a /∈ acceptR
⇒
(acceptR ∪ c �−→ a) ∩ rejectR = ∅

CASE SPLIT
acceptR ∩ rejectR = ∅ acceptR ∩ rejectR = ∅
c �−→ a ∈ acceptS c �−→ a ∈ acceptS
c �−→ a /∈ acceptR c �−→ a /∈ acceptR
c �−→ a /∈ rejectR c �−→ a ∈ rejectR

⇒ ⇒
(acceptR ∪ c �−→ a) ∩ rejectR = ∅ (acceptR ∪ c �−→ a) ∩ rejectR = ∅

However if we prove the negation of the goal:

acceptR ∩ rejectR = ∅
c �−→ a ∈ acceptS
c �−→ a /∈ acceptR
c �−→ a ∈ rejectR

⇒
(acceptR ∪ c �−→ a) ∩ rejectR �= ∅



Feedback to the user



Automatic invariant generation



Invariant generation via animation
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We are currently studying Daikon as a possible invariant generator
to integrate with Rodin.



Invariant generator integrated with Rodin
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Summary

Our main purpose is to help UML-B users by suggesting changes
to their models trough:

� Proof failure analysis.

� Automatic invariant generation.

� Analysis of anti-patterns.


