
SEAR: Systems Evolution via Animation and
Reasoning

Andrew Ireland, Maria Teresa Llano and Rob Pooley

Dependable Systems Group
School of Mathematical and Computer Sciences

Heriot-Watt University

Rodin Workshop, July, 2009

Currently

Success

Failure

PO Generator Auto provers

Modell ing interface Reasoning interface

Models

POs Proofs

Failed POs Proof steps

Our objective

Success

Failure

PO Generator Auto provers

Proof checker

Proof p lanning
+

Failure analysis
Models

POs Proofs

Failed POs

Tactics

Proof steps

Modelling suggestions

Reasoned modell ing interface

Specific objectives

- Proof search guided by proof plans.
- Proof failure analysis Proof patching.

Proof planning
+

Failure analysis
- Extension of UML-B with activity diagrams.
- Proof failure analysis UML-B modelling suggestions.
- Invariant generation via animation.
- Anti-patterns.

UML-B extension proposal

Extending UML-B

Class Class

Class

State1 State2

State3

 FORMAL
ANALYSIS

FORMAL
SPECIFICATION

UML-B

EVENT-B

Extending UML-B with activity diagrams

Class Class

Class

State1 State2

State3

 FORMAL
ANALYSIS

FORMAL
SPECIFICATION

UML-B

EVENT-B

Activi ty1 Activi ty2

. . .

Activity diagram

Action

Action Action

[Guard]

[Guard]

Transitions

Merge

Init ial state

Final state

Decision

Fork

Join

Why activity diagrams?

� Allow the representation of the flow of actions and the
interactions between the elements of a system.

� Contain more detailed information about the behaviour of the
system.

� It is possible the modelling of concurrent behaviour.

� Modelling suggestions in the form of activity diagrams.

� Anti-patterns have already been analysed with activity
diagrams in UML. 1

1M.T. Llano and R. Pooley. UML specification and correction of
object-oriented anti-patterns. ICSEA 2009.

Analysis of anti-patterns in UML-B

Anti-patterns

Anti-patterns are design patterns whose purpose is to document
common bad practices in software design and to suggest solutions
to improve them.

Anti-patterns are not mistakes! they are models that produce bad
consequences like:

� Slower execution times.

� Unnecessary consumption of resources

� Violation of good design principles.

Our purpose: To identify anti-patterns by
reasoning about UML-B designs.

Advantages of analysing anti-patterns in UML-B

� It is possible to identify ineffective or potentially harmful
models.

� They suggest a refactored suitable solution for the problem.

� Having a catalogue of UML-B anti-patterns would equip
UML-B users with knowledge about patterns of models they
should avoid.

� Anti-patterns can be analysed in the design stage.

Modelling suggestions through proof
failure analysis

Proof failure analysis

� Analysis of failed proof obligations.

� Generation of modelling suggestions.

� Modelling suggestions translated into UML-B diagrams.

� Feedback to the user given in the form of UML-B designs
rather than in the form of failed proof obligations or Event-B
code.

Example: The contract net protocol

� Protocol of distributed negotiation process.

� An agent (the initiator) needs to find an agent or groups of
agents (participants) to be in charge of completing a task.

� The initiator calls for proposals from the participants.

� The best proposals are chosen.

� The participants are informed about their rejection or
acceptance.

� The protocol finishes when the task is completed by the
participants.

Acceptance and rejection of messages buggy model

Translation to Event-B

Event receiveAcceptance b= Event receiveRejection b=
Any c, a Where Any c, a Where

c �−→ a ∈ acceptS c �−→ a ∈ rejectS
c �−→ a /∈ acceptR c �−→ a /∈ rejectR

Then Then
acceptR := acceptR ∪ { c �−→ a } rejectR := rejectR ∪ { c �−→ a }

End End

Proof obligations

Invariant: acceptR ∩ rejectR = ∅ .

Proof obligations
Hypothesis Hypothesis
acceptR ∩ rejectR = ∅ acceptR ∩ rejectR = ∅
c �−→ a ∈ acceptS c �−→ a ∈ rejectS
c �−→ a /∈ acceptR c �−→ a /∈ rejectR

Goal Goal
(acceptR ∪ c �−→ a) ∩ rejectR = ∅ acceptR ∩ (rejectR ∪ c �−→ a) = ∅

Reasoned modelling

acceptR ∩ rejectR = ∅
c �−→ a ∈ acceptS
c �−→ a /∈ acceptR
⇒
(acceptR ∪ c �−→ a) ∩ rejectR = ∅

CASE SPLIT
acceptR ∩ rejectR = ∅ acceptR ∩ rejectR = ∅
c �−→ a ∈ acceptS c �−→ a ∈ acceptS
c �−→ a /∈ acceptR c �−→ a /∈ acceptR
c �−→ a /∈ rejectR c �−→ a ∈ rejectR

⇒ ⇒
(acceptR ∪ c �−→ a) ∩ rejectR = ∅ (acceptR ∪ c �−→ a) ∩ rejectR = ∅

However if we prove the negation of the goal:

acceptR ∩ rejectR = ∅
c �−→ a ∈ acceptS
c �−→ a /∈ acceptR
c �−→ a ∈ rejectR

⇒
(acceptR ∪ c �−→ a) ∩ rejectR �= ∅

Feedback to the user

Automatic invariant generation

Invariant generation via animation

Invariant generator

Animation

Test generator

Model

Tests

Execution traces

Likely invariants

We are currently studying Daikon as a possible invariant generator
to integrate with Rodin.

Invariant generator integrated with Rodin

Invariant generator

Proof planner
+

Failure analysis

Failed POs

POs Information

Test generator Tests Pro-B

Execution Traces

Likely invariants

Modelling suggestions

Model

Summary

Our main purpose is to help UML-B users by suggesting changes
to their models trough:

� Proof failure analysis.

� Automatic invariant generation.

� Analysis of anti-patterns.

