
Language and Tool Support for

Class and State Machine

Refinement in UML-B

Mar Yah Said, Michael Butler
and Colin Snook

(mys05r,mjb,cfs)@ecs.soton.ac.uk

School of Electronic and Computer Science

2

Outline

� Overview of UML-B

� Class refinement

� State machine refinement

� Technique of event movement

� ATM case study

� Conclusion

3

What is UML-B?

� Is a UML-like graphical front-end to Event-B.

� Supported by UML-B tool – a plug-in extension to Rodin
tools.

� Generates Event-B specification from UML-B diagrams models.

� Event-B errors are reflected on the UML-B diagrams.

� Four diagrams: package diagram, context diagram, class
diagram and state machine diagram

4

Package Diagram

5

Class diagram

� Classes CA and CB give
rise to the sets CA_SET
and CB_SET in the
generated implicit Event-B
context.

� In the generated Event-B
machine, the classes CA
and CB become variables.

� The attributes x and a_b
give rise to variables.

6

Self name property of a class

� Each class has a self name
property

� Represents an instance of
a class

� Default name is self

� Can be change by modeller

� Give rise to a parameter of
an event in the Event-B
machine

7

State Machine of the class CA
� Class CA has a state machine SM
� Disjoint sets representation

� A disjoint sets of CA are introduced as
variables:

� Variable A represents the set of instances of
CA that are in the state A.

� State function representation
� A variable SM is introduced representing a

function mapping CA to an enumerated set
of states, SM_STATES:

� That is, SM maps each instance of CA to its
state.

{ }=∩

∈

∈

BA

(CA) B

(CA)A

P

P

{ }

STATESSMCASM

BASTATESSM

_

,_

→∈

=

8

Generated Event-B Specification

(Transitions becomes events)

Class Refinement

10

Notion of Refined Classes

(and inherited attributes)

� Motivation: performing refinement in Event-B.

� Reflect the refinement of variables in Event-B.

� Refined class is one that refines a more abstract class.

� Inherited attribute is one that inherits an attribute of the
abstract class.

11

Keep/Drop/New Attributes

a3

a2

a1

Class C

a5

a4

a2

a1

Refined Class C

inherited

new

Similarly for classes: UML-B refinement may contain refined
classes, may drop refined classes or/and introduce new classes.

⇒reflects Event-B refinement: keep variables, drop variables,
introduce new variables in the refinement.

12

Class Diagram of M1 Class Diagram of M2

Package Diagram

Refined Classes

Inherited attributes

New Class

New attributes

Refinement of classes in UML-B
(Techniques of adding new classes and new attributes)

Gluing invariant

State Machine

Refinement

14

Notion of Refined State Machines

(and refined states)

� Motivation: state machine hierarchy in UML-B and
refinement in Event-B.

� Refined state machine is one that refines a more abstract
state machine.

� Refined state is one that refines a state of the abstract
state machine.

� Essential concept : state machines are refined by
elaborating an abstract state with nested sub-states.

15

Refinement of state machines in UML-B

State machine
SM of M1 Refined state machine

of M2 refining SM of M1

•Transitions t2 is
replaced with
transitions t2a
and t2b which
refine the
abstract
transition t2 of
machine M1.

•This refinement
of a state
machine reflects
the refinement in
Event-B where
many events
refine one
abstract event.

State machine
SM of M1

⊑

16

Nested state machine SM_A
(State Elaboration and Transition Elaboration Technique)

Refined state machine
of M2 refining SM of M1

State machine
SM_A of M2

•The transition t1
of the nested state
machine SM_A elaborates
the incoming transition
t1 of the refined super-
state A.

•The transitions t2a and
t2b of SM_A elaborate the
outgoing transition t2a and
t2b of the refined super-
state A.

•The transition t3 of the
SM_A elaborates the self
loop transition of the
refined super-state A

•Generated gluing
invariant:

A3A2A1A ∪∪=

Technique of

Event Movement

18

Technique of Event Movement

� Two methods of moving a class event:

1. move into a state machine as a transition in a refined class.

2. move to a new class as a class event or a transition in a state
machine.

� Method (1) does not need any new UML-B language
feature. However, method (2) creates a motivation for the
need to be able to change the default self name in UML-B.

19

� In refinement, the event e1 is moved to the new class CC as a transition
in the state machine CC_SM.

� a witness property is defined for the event e1 :

where ca is a parameter of the event e1 and selfCA is an instance of the
abstract class CA.

Abstract machine
Refinement machine

ca = selfCA

⊑

Technique of Event Movement:

Method 2

Case Study :

Auto-teller machine (ATM)

21

Package Diagram of ATM
� There are three machine levels for the ATM UML-B development:

� Abstract machine (ATM A): Models bank accounts and operations on
accounts.

� First Refinement (ATM R1): Introduces the ATMs, cards and PIN
numbers.

� Second Refinement (ATM R2): Introduces an explicit validation
transition for cards and splits withdrawal into a bank transition and an
ATM transition.

22

ATM Abstract Machine

� A class account (a) has attribute bal and four events: createAccount, deposit,

withdraw and checkBalance.

� The specification of the withdraw event is shown in (b) including parameters, guard

and action.

� selfAcc is the self name property defined for the class Account.

23

ATM First Refinement : Class Diagram

� The events withdraw and checkBalance of its abstract class are moved to the new class atm in this
refinement as transitions in the state machine ATM_SM of the class atm.

� In the refinement, we specify that the withdrawal takes place via an ATM. At the abstract level it is
natural to specify the withdrawal as an event of the Account class while in the refinement it is
natural to specify it as an event of the ATM class.

new classes

inherited
attribute

refined class

24

ATM First Refinement :

State Machine of ATM Class

� The state machine ATM_SM partitions the behaviour of an ATM into an idle
state, (i.e., not being used/not active) or active_atm state (i.e., is being
used).

� Three new events: insertCard, ejectCard and withdrawFail.

� Events withdrawOK and checkBalance refine the abstract events.

(new)

(new)

(new)

25

ATM First Refinement:

Properties of withdrawOK event

The guards are
strengthened

A witness specifying
that ac represents
the selfAcc of the
abstract event

26

ATM First Refinement:

Refines properties of withdrawOK

event

27

ATM Second Refinement:

Refined state machine ATM_SM

nested state
machine

Four ejectCard
events refining one
abstract event

28

ATM Second Refinement:
Nested state machine of the refined state active_atm

(new)(new)

(new)

(new)

29

Conclusion
� Introduced the notion of refined classes and refined state

machines.

� Introduced five refinement techniques:
� Add new classes in a refinement
� Add new attributes and associations to a refined class
� State elaboration
� Transition elaboration
� Move event in a refined class or a new class in a refinement

� The above techniques has been experimented in the ATM case
study using the UML-B tool.

� The Rodin tool provers were used to generate and prove the proof
obligations of the case study.

30

Conclusion and Future Work

� The approach of elaborating states with sub-states in
refinement:

� Supports and incremental refinement approach.

� Supports modular reasoning by localising the invariants
required for refinement proofs.

� Extend UML-B to support decomposition.

� Add support for parallel state machine.

