UNIVERSITY OF

Southampton
Language and Tool Support for

Class and State Machine
Refinement in UML-B

Mar Yah Said, Michael Butler

and Colin Snook

(mys05r,mjb,cfs)@ecs.soton.ac.uk
School of Electronic and Computer Science

Outline

o Overview of UML-B

o Class refinement

0o State machine refinement

o Technique of event movement
o ATM case study

O Conclusion

What 1s UML-B?

o Is a UML-like graphical front-end to Event-B.

o Supported by UML-B tool — a plug-in extension to Rodin
tools.

= Generates Event-B specification from UML-B diagrams models.
= Event-B errors are reflected on the UML-B diagrams.

o Four diagrams: package diagram, context diagram, class
diagram and state machine diagram

Package Diagram

Wisual

I
| sk Palette I
T&aam-
(= Modes £
@ Machine
/ @ Context
Extends
== Links @0
£ Refines
Sees
Extends
Fefi nesT
Properties &2 - [& Rodin Problems i S
Machine : M1
[
Overview Mame: |M1 |
f‘ g
_E_mr_s Comment: | |
Modal

[Open Class Diagram... J

[Make a refinement of this Machine. ..

Class diagram

o Classes CA and CB give

rl Se to th e Sets CA— SET - .:.:I:i'ibutes o.ﬁ.;?butes
a n d CB_ SET I n th e : :_bN CE Events
generated implicit Event-B S o n oab L
CO n tEXt i Statemachines ——

Invariants Thearems

Thearems

o In the generated Event-B
machine, the classes CA
and CB become variables.

INVARIANTS
_ CA.type : CA e P (CA_SET)
o The attributes x and a_b CB.type : CB e P (CB_SET)

give rise to variables. e S b e on— ce

Selt name property of a class

©CA
R 0 Each class has a self name
s property
Skatemachines
inaters 0 Represents an instance of
a class
— o Default name is self
Properties | Marne; ,iz.& __
e e— e . o Can be change by modeller
— | SelfMamie: lse
Events | | SEa e :

o Give rise to a parameter of
an event in the Event-B
machine

State Machine of the class CA

pra_ 1 o Class CA has a state machine SM
b o Disjoint sets representation
[e = A disjoint sets of CA are introduced as
| Statemachings E . va ria |eS:
| | A e P(CA)
fSsm ||
|+ 11| T oy Be P(CA)
+t2 -¢- A .
i Eg ;Et_ia_tem;achii:nes: {} s A M B = { }
| = = Variable A represents the set of instances of
T | . e CA that are in the state A.
+ 12
E o State function representation
Statemachines = A variable SM is introduced representing a
Invariants | function mapping CA to an enumerated set
Theorems | of states, SM_STATES:
4 t4

SM _STATES = {4, B}
SM € CA—> SM _ STATES

m That is, SM maps each instance of CA to its
state.

Generated Event-B Specification
(Transitions becomes events)

t1l = t2 =
STATUS STATUS
ordinary ordinary
ANY ANY .
self // constructed instance of class CA self // contextual instance of class CA
WHERE HHsEglEf type self CA
self.type self € CA SET \ CA SM_isin A colf e A
UL, _ 3 THEN
SM_enterState_ A : A=A u {self} SM_enterState B B=Bu {self}
Cﬂu_COﬂStrUCtor CA =CAuvu {SE].'I:} SM_leaveﬁtate_A A=A\ {self}
END END
t3 = e =
STATUS
STATUS ordinary
ordinary ANY
ANY self // contextual instance of class CA
self // contextual instance of class CA WHERE
self.type self € CA
WHERE SM_isin B self € B
self.type self e CA THEN
SM_isin A self € A SM_leaveState B B =B \ {self}
CA destructor CA = CA N\ {self}
THEN
. CA.a_b_destructor a b = {self} = a b
Sklp CA.x_destructor ¥ = {self} = x
END

END

UNIVERSITY OF

Southampton

Class Refinement

Notion of Refined Classes
(and inherited attributes)

Motivation: performing refinement in Event-B.
Reflect the refinement of variables in Event-B.
Refined class is one that refines a more abstract class.

Inherited attribute is one that inherits an attribute of the
abstract class.

10

Keep/Drop/New Attributes

Class C

al al |
> inherited
a2 a2 |
a3 agd |
r new
ad

Similarly for classes: UML-B refinement may contain refined
classes, may drop refined classes or/and introduce new classes.

—reflects Event-B refinement: keep variables, drop variables,
introduce new variables in the refinement.

11

Refinement of classes in UMIL.-B

(Techniques of adding new classes and new attributes)

@ Ca

Refines

Package Diagram

Inherited attributes

e

-

Attributes
|
@ ab: CB

¢ (B

Attributes

Events

Events

~ Statemachines

Skatemachines

Invariants

Invariants

Thearems

Theorems

Gluing invariant

+ CA

Attributes
L+ B4
o ab }

0\’,-:

$B

Events

Statemachines

Tnvariants

“+ ‘self'y = selfy

Theorems

Attributes
4 ch_co CC

" Events

New attributes

Statemachines

Invariants

Refined Classes

New Class

Statemachines

Invariants

" Theorems

12

UNIVERSITY OF

Southampton
State Machine

Reftinement

Notion of Refined State Machines
(and refined states)

Motivation: state machine hierarchy in UML-B and
refinement in Event-B.

Refined state machine is one that refines a more abstract
state machine.

Refined state is one that refines a state of the abstract
state machine.

Essential concept : state machines are refined by
elaborating an abstract state with nested sub-states.

14

Refinement of state machines in UMI.-B

eTransitions t”Z is

+ A replaced with
Statemachines transitions t2a
=\ e S V== and t2b which
s iga _ refine the
o ey Mg abstract
4 t2b transition t2 of
E | R machine M1.
Invariants
rL MET eThis refinement
% $t2a | ¥t of a state
Staternac o s .
o +B machine reflects
Invariants- [. .
: Statemachine the refinement in

Event-B where
many events

Invariants

Thearems

e refine one
1:4_ N abstract event.

I

i 1
| |
) i

State machine

SM of M1 Refined state machine 15
of M2 refining SM of M1

Nested state machine SM A

(State Elaboration and Transition Elaboration Technique)

4 t1 |;
&+ A
Statemachines
SM_A
11
4 12a
<+ t3
4 12b
| #15 |

Invariants

~ Thearems

4 15|
¢ A3
Staternachine

Invariants

~ Theorems

+ t4 l

Refined state machine State machine
of M2 refining SM of M1 SM_A of M2

eThe transition t]

of the nested state
machine SM_A elaborates
the incoming transition
t1 of the refined super-
state A.

eThe transitions t2a and
t2b of SM_A elaborate the
outgoing transition t2a and
t2b of the refined super-
state A.

eThe transition t3 of the
SM_A elaborates the self
loop transition of the
refined super-state A

eGenerated gluing
invariant:

16

UNIVERSITY OF

Southampton

Technique of

Event Movement

Technique of Event Movement

Two methods of moving a class event:
1. move into a state machine as a transition in a refined class.

2. move to a new class as a class event or a transition in a state
machine.

Method (1) does not need any new UML-B language
feature. However, method (2) creates a motivation for the
need to be able to change the default sel/f name in UML-B.

18

Technique of Event Movement:

Method 2

< CA
Attributes
< x: N

Events

4+ el

Etatemachines

Invariants

Thearems

Il

4 CA

Attributes
4+ %

Events

Gtatemachines

Invariants

Theorems

< CC

Atkributes

Events

Statemachines
4 CC_SM

el

Invariants

4+ Cl

Statemachines

Invariants

Theorems

4+ el

+ C2

Statemachines

Invariants

Theorems Theorems

Abstract machine
Refinement machine

o In refinement, the event el is moved to the new class CC as a transition
in the state machine CC_SM.

O a witness property is defined for the event el :
where ca is a parameter of the event el and selfCA is an instance of the

abstract class CA.
19

UNIVERSITY OF

Southampton

Case Study :
Auto-teller machine (ATM)

Package Diagram of ATM

o There are three machine levels for the ATM UML-B development:

= Abstract machine (ATM A): Models bank accounts and operations on
accounts.

m First Refinement (ATM R1): Introduces the ATMs, cards and PIN
numbers.

= Second Refinement (ATM R2): Introduces an explicit validation
transition for cards and splits withdrawal into a bank transition and an
ATM transition.

21

ATM Abstract Machine

Class Event : withdraw

2 account

Attributes Properties Mame: |Wi thdraw

¥ bal: N Refines
Events Parameters Mame Type Local
4+ createAccount B Frameters: am i false
4 deposit _—
4 withdraw Guards
4 checkBalance Actions
Statemachines Errors Guards: selfiacc-bal = am
Invariants
. selfacc-bal = selface-bal — am
Theorems Ackions:

{(a) Class Diagram

(b} Properties of the event withdraw

O A class account (a) has attribute bal and four events: createAccount, deposit,
withdraw and checkBalance.

O The specification of the withdraw event is shown in (b) including parameters, guard
and action.

O selfAcc is the self name property defined for the class Account.

ATM First Retinement : Class Diagram
new classes \

@ atm
Attributes
% account % cards 4 atm card: cards
4+ bjlth ibutes Attributes Events
1..1 o..1 % card account: account Statemachines
/ Events T 0. .1 0..n T
herited + createAccount |4 card account _ -
attribute < deposit Skatemachines ¢ atm card 4+ insertcard
Statemachines T + Ej ectCard
4 wilthdrawlk
Invariants Theorams 4+ withdrawFa1l
Thearems

4 checkBalance

T Invariants

Thearems

refined class

The events withdraw and checkBalance of its abstract class are moved to the new class atm in this
refinement as transitions in the state machine ATM_SM of the class atm.

In the refinement, we specify that the withdrawal takes place via an ATM. At the abstract level it is

natural to specify the withdrawal as an event of the Account class while in the refinement it is
natural to specify it as an event of the ATM class.

23

ATM First Refinement :
State Machine of ATM Class

withdrawokK
(new) il
% idle | * ejectCard rﬁéﬁiﬁ'

atm

el e e
..ﬁ_F_F_?EE?___IEtate_machines;».--' o | Statemachines |

T R T T I - 1

| In | Invariants e

variants | . :
hearems — heorens |+ withdrawFail

¥ 1nsertCard | (new)

(new) |

ko EHeckBéiance

The state machine ATM_SM partitions the behaviour of an ATM into an idle

statcel), (i.e., not being used/not active) or active_atm state (i.e., is being
used).

Three new events: insertCard, ejectCard and withdrawFail.

Events withdrawOK and checkBalance refine the abstract events.
24

ATM First Refinement:
Properties ot withdrawOK event

Transition : withdrawOkK = active_atm -= active_atm

—

Properties Marne: wlthdrawlk

Refines

Parameters MName Type Local

€ Card false
am M talse

A witness specifying

Witnesses that ac represents

Parameters:

auards ac fAecount 'Fa]_se the SelfACC Of the
Actions abstract event

Ertots S ac=selfacc 4/

selfATMedom{atm_card The guards are

ac-bal = am strengthened
Guards: C-card_account = ac

seltATM-atm card = ¢

Actions: ac-bal = ac-bal - am

Refines properties of withdrawOK

cvent

Transition : withdrawDK = active_atm -= active_atm

Properties Refined Event... |
Refines wlthdraw

Parameters

Witness

Guards

Ackions

Errors

ATM Second Refinement:
Refined state machine ATM SM

Four ejectCard

ejectCardd

¥ ejectCards

withdrawOk

< active_atm

ejectCardz

Y i J.

= idle

Statemachines

ejectCardl

. # create

Invariants

Theorems

¥ insertCard

Statemachines

active_atm_SM

insertCard

% ejectCardl

ejectCard2

% ejectCard3

ejectCards

2 withdrawOk
% withdrawFail
checlBalance
% validateCardrail
% validateCardOk
4 withdrawATM
% checkBalATM

Invariants

Theorems

A

withdrawFail

% checkBalance

nested state
machine

27

ATM Second Refinement:

Nested state machine of the refined state active atm

4 1nsertCa rd
o inveﬁiﬁnt’s

_ Theorems i

(new) ¥+ validateCardoK 4 validatecardFail (new)

% transoption 4 invalidcard

I. 4 electCard2 statemachines Statemachines | ¥ electCa rdh],-. |

Inwvariants Invariants

Theorems Theorems

< withdrelinaill
4 withdrawok
1 v/ 4 ch_l;-ckB'a'Lance

" _
e 4 performedTrans (new)
|.| Statemachines & withdrawaTm | Statemachines

4 ejectCards Invariants 4 ~ | Invariants

il 4+ checkBalATM

28

Conclusion

Introduced the notion of refined classes and refined state
machines.

Introduced five refinement techniques:
= Add new classes in a refinement

= Add new attributes and associations to a refined class

m State elaboration

= Transition elaboration

= Move event in a refined class or a new class in a refinement

The above techniques has been experimented in the ATM case
study using the UML-B tool.

The Rodin tool provers were used to generate and prove the proof
obligations of the case study.

29

Conclusion and Future Work

o The approach of elaborating states with sub-states in
refinement:

= Supports and incremental refinement approach.

m Supports modular reasoning by localising the invariants
required for refinement proofs.

o Extend UML-B to support decomposition.

o Add support for parallel state machine.

30

