Rodin in the field of railway system engineering

Tomas Fischer, Thales Austria GmbH
Contents

- Motivation
- Development Process
- Rodin Toolset
- Key Messages
Motivation

- **Formally written is better than informally told**
 - Provided it can be read and understood

- **Mathematically proven is better than just tested, but**
 - Incomplete proof is not worth anything
 - Sometimes (often) strongly confident is good enough

- **Business Driver: Reduce development costs and time to market**
 - Still maintaining the product quality
 - Time and cost can be decreased through productivity improvements
3 Processes – 3 Teams – 3 Skill Levels

- **Core development**
 - Development of core assets as generic definitions with extension points
 - Full Event-B expertise

- **Application engineering**
 - Instantiation of core assets for a given customer with customer-specific definitions
 - Partial Event-B expertise – can rely on support from core team

- **Field installation**
 - Deployment and validation of a customer system on a specific station
 - No Event-B expertise – Loops back to application development is expensive
Development process – Feature Driven Development

- **Design and realization by features**
 - Impact on already realized features
 - Parallel development

- **Example features**
 - Main signal, distant signal
 - Main / distant signal on same mast
 - Combined main and distant signal
 - Additional signal types

- **Different customers - different rules**

Development process – Domain Driven Design

- **Split the problem (and the solution) into subdomains**
 - Separation of concerns
 - Communication and collaboration – technical and domain experts

- **Elements domain**
 - Track, Point
 - Crossing with/without movable frog
 - Single / double slip switch

- **Route domain**
 - Points locked in the proper position
Additional Concepts

- **Object oriented analysis and design**
- **Variability management (product line)**
- **Model based engineering**
 - E.g. system model in Capella: https://www.polarsys.org/solutions/capella
- **Continuous integration**
 - Delta verification and validation
- **Quality assurance**
 - Rigorous reviews
- **Sustainability (25+ years)**
Rodin Toolset @ Thales Austria

- **Rodin utilization**
 - Specification and station data
 - Core domain
 - Full integration possible?

- **Assessment**
 - Event-B environment: TRL 5+
 - Provers: TRL 5+
 - Pro-B: TRL 5
 - iUML-B: TRL 4 – 5
 - Code generator, MBT: TRL 2

Plugins: **Accepted** - **Tentative** - **Declined**
Experiences and demand – Base

- **General Issues**
 - Tool stability
 - Documentation and tutorials
 - Maintenance (tool lock)

- **Plain text external representation**
 - Source control, teaming
 - Diff & merge, review support
 - Integration in the overall development process and toolchain

- **Syntactic sugar**
 - Named functions and predicates
Experiences and demand – Modeling and proving

• **High level languages**
 – Objects (records), control flow
 – High level feedback (provers, model checking, animation)

• **Not only refinement**
 – Relaxed refinement rules (refine more machines, combine unrelated events)
 – Top-down (refinement) as well as bottom-up (composition) approach

• **Structures (with namespaces)**
 – Packages, Modules, Components

• **Impact analysis**

• **Temporal logic (LTL) formulae**
Key Messages

- **Set theory and 1st order logic are reasonable**
 - High level languages (OO) are needed for the non Event-B experts

- **Practical applicability for real-word applications matters**
 - Hard facts: Problem space gets intractable
 - Soft facts: Usability gets unsatisfactory

- **Improvements and enhancements**
 - Many are possible in the Rodin toolset
 - More can be done by augmenting ‘pure’ Event-B

- **Cost - Benefit analysis (business case) will decide**
Thank you for your attention

Open source demonstration model:
https://github.com/klar42/railground