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Abstract

Event-B [6] is a formalism for discrete system modelling. Key features of Event-B include the
use of set theory as a modelling notation, the use of refinement to model systems at different
levels of abstraction, and the use of mathematical proof to verify consistency between refinement
levels. Event-B provides two constructs to model systems; contexts describe static properties
(constants and carrier sets) whereas machines model dynamic behaviour (variables and events). In
this document we propose a mechanism by which the mathematical language of Event-B as well
as the proof capabilities of its tool [7] can be extended by users whilst maintaining the soundness
of the prover. Initially, we focus on extending the prover with a subset of proof rules: the rewrite
rules. We envisage the new mechanism to evolve to cater for the different mathematical extensions
proposed in [4].

Keywords: Event-B, rule-based prover, rewrite rules, inference rules, mathematical ex-
tensions

1 Introduction

Modelling of discrete systems in Event-B is carried out by specifying static properties using contexts,
and dynamic aspects using machines. It is evident that extending the modelling language and the
proof rules of Event-B should not be done within those two constructs, for we must maintain a clear
separation between that activity and modelling. Therefore, we introduce a new construct for the
purpose of extending the Event-B language and its proof capabilities.

Outline. Sections 2 and 3 provide an overview of Event-B and its tool. We put particular emphasis on
the proving infrastructure. Section 4 provides the general structure of the new construct. It describes
the different elements that can be specified. Section 5 describes the relationship between the proposed
construct, contexts and machines. Section 6 provides an insight into rewrite rules and the general
issues related to them. We conclude by outlining our immediate objectives.
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2 Structure of Event-B Mathematical Language

In the Event-B mathematical language [10], predicates and expressions are separate syntactic cat-
egories. Expressions are defined in terms of constants (e.g., 1), variables and operators (e.g., ∪).
Expression operators can have expressions as arguments. They can also have predicates as arguments
e.g., (λx · P (x) | E(x)) where P (x) is a predicate and E(x) is an expression.

Predicates, on the other hand, are built from basic predicates e.g., x ∈ S, logical connectives and
quantifiers. Basic predicates take expressions as arguments e.g., x ∈ S has x and S as arguments.

Expressions have a type which can be one of the following:

1. a basic set such as Z or a carrier set supplied by the modeller in contexts;

2. a power set of another type;

3. a cartesian product of two types.

Expression operators have typing rules of the form:

type(x1) = α1 ... type(xn) = αn

type(op(x1, ..., xn)) = α
.

Arguments of a basic predicate must satisfy its typing rule e.g., the typing rule for the basic predicate
finite(R) is:

type(R) = P(α).

Alongside typing rules, expression operators have well-definedness predicates. WD(E) is used to
denote the well-definedness predicate of expression E. Proof obligations are generated (if necessary)
to establich the well-definedness of expressions appearing in models. To illustrate, we consider the
expression card(E) for which we have:

WD(card(E)) ⇔ WD(E) ∧ finite(E).

We limited our discussion here to the most relevant details that will be useful in later sections. Next,
we present an overview of Event-B proving infrastructure. This is important as the implementation
of the ideas to follow will be based on the existing Rodin architecture. For a general discussion of the
overall architecture, we refer to [3].

3 The Proving Infrastructure

In this section, we outline the architecture of the Proof Manager. We also present an overview of the
external provers integrated within the toolset.

The Proof Manager keeps track of the proofs associated with each proof obligation. Its internal
architecture can be viewed as an integration of a static part and an extensible part. The extensible
part generates the proof rules which can then be used to construct proofs. The Proof Manager
can be extended by implementing more proof rules. Constructing and maintaining proofs (proof
housekeeping) is the task of the static part of the Proof Manager. In what follows, we briefly describe
the general ideas of the implementation [9] without delving into too much technical details.
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Reasoners are objects that can generate concrete proof rules from a given sequent (and potentially
other input e.g., a predicate in the case of the cut rule). These can be viewed as schemas for rules.
The reasoner is successful if its rule schema is applicable to the given sequent. Reasoners need to be
logically valid and re-playable (deterministic).

Proof Trees are objects based on Proof Tree Nodes. Each node is made of a sequent, a concrete
proof rule (generated by a reasoner or could be null) and a list of children nodes (could be null if
the proof rule is null). A node can be pending (its proof rule is null, and consequently the node has
no children nodes) or non-pending otherwise. For each proof obligation, a proof tree is constructed
where the sequent of its root node is the same as the obligation. If the proof rule is not null, it must
be applicable to the sequent, and the children list corresponds to the result of the application.

Tactics are used to manipulate proof trees. There is a distinction between basic tactics and tactical
tactics. Basic tactics act on a single node and include: pruning (successful for non-pending nodes)
and reasoner application (successful if the reasoner is applicable). Tactical tactics include applying a
tactic on all pending nodes, repeating tactic application and sequentially applying a list of tactics.

The Proof Manager can be extended with new reasoners and tactics. There is also an interface for
encapsulating calls to external provers. The idea is to encapsulate prover calls as reasoner applications
that are considered successful if the prover succeeds in proving the sequent. One drawback of this is
that information about how the external prover managed the proof (e.g., the list of used hypotheses)
is not always available to the Proof Manager. Here, we describe two provers that have been integrated
into the proving infrastructure.

1. The Predicate Prover (PP): this prover is built around a hierarchy of provers. It contains a
decision procedure for propositional logic and a semi-decision procedure for first order logic.
Another major component is the translator from set theory to first order logic. It is built in
accordance with the set-theoretic construction outlined in the B-Book [2]. Statements involving
complex set-theoretic operators are reduced to statements involving set membership only. The
resulting statements can be considered as predicate logic statements with the set membership
being left un-interpreted [5].

2. The ML Prover (ML): is a rule-based prover used in the Logic Solver. The Logic Solver is the
compiler-interpreter used for B. PP was originally developed to validate the many proof rules
of ML. ML and PP are part of Atelier-B which provides the proving infrastructure for B.

3.1 Proving Modes

The Proof Manager can work in two modes: automatic mode and interactive mode. The user can
interact with the Proof Manager by specifying what rules to apply to the current sequent. The
Proof Manager uses auto-tactics and post-tactics when in automatic mode. Auto-tactics are tactics
applied when a new proof obligation is generated in order to discharge, simplify or split it. They
can also be invoked by the user. If the obligation is not yet discharged, the user can then interact
with the Proof Manager. Post-tactics are tactics applied after each saved interaction in an attempt to
discharge, simplify or split the resulting sequents. Finally, the Proof Manager can be extended with
new auto-tactics and post-tactics.
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4 The Theory Construct

In order to facilitate extending the mathematical language and the proof rules in a systematic and
sound fashion, we propose a new construct, we may refer to as Theory. Theories will provide a
mechanism by which the user can specify new datatypes (introducing new type constructors) and
definitions to extend the mathematical language. It will also make it easy to extend the proof
capabilities of the Event-B tool by specifying rewrite and inference rules. Proof obligations will
be generated, and these need to be discharged to ensure the soundness of the theory with respect to
some well-defined criteria. This new construct will be a step forward in terms of realising the many
extensions proposed in [4].

Figure 1 describes the potential elements of the theory construct. In what follows, we discuss each of
these. Our objective here is to explain what is required of the new construct. As our initial concern
is rewrite rules, we glance over the elements and present examples when appropriate.

THEORY Theory

SEES

SETS

DATATYPES

DEFINITIONS

REWRITE RULES

INFERENCE RULES

END

Figure 1: The Theory Construct

4.1 SEES

If a theory T1 sees another theory T0, this has the effect of making datatypes, definitions, rewrite
rules as well as inference rules specified in T0 accessible to T1 as if they were defined in T1. A theory
can see multiple theories. Finally, theories should be organised according to a taxonomy based on
structures, e.g., theories about sets, relations, integers, etc.

4.2 SETS

The sets provide the types (analogous to carrier sets in contexts) on which the theory is parameterised.
All the datatypes, definitions and rules will be parameterised on those types. This follows a similar
technique employed in PVS [8].
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4.3 DATATYPES

The set theory of Event-B can be extended with a new algebraic type by defining a new type construc-
tion operator such as ×, and one or more element construction operator such as 7→. This is discussed
further in [4].

4.4 DEFINITIONS

Currently, basic predicates (e.g., E ∈ S) and operators (e.g., ∪ and ∩) are directly coded into the
Rodin platform. The ultimate objective is to be able to specify new basic predicates and operators
without writing Java code. The capability of specifying infix notation will be important. This element
of the theory construct can be used for this very purpose. For more on this, we refer the reader to [4].

4.5 REWRITE RULES

Rewrite rules can be used to transform expressions and predicates to equivalent forms. This element of
the theory construct will be used to specify two types of rewrite rules: conditional and unconditional
rules. This is discussed in more depth in §6.

4.6 INFERENCE RULES

Inference rules are used to construct proofs of sequents. An inference rule has a list of antecedent
sequents and one consequent sequent. It has the following form:

A1, ..., An

C
r

where Ai are the antecedents and C is the consequent. This element of the theory construct can be
used to add such rules. Proof obligations will be generated in order to validate them.

An example inference rule (implemented in Rodin) is the following:

−→
H, P ` R

−→
H, Q ` R

−→
H, P ∨Q ` R

case

where
−→
H is a list of predicates. This type of rules cannot be expressed in the mathematical language

of Event-B as it requires the use of predicate variables. It is easy to extend the language syntax
with predicate variables (should only be used within theories, and are not available for modelling).
However, the proof obligations generated to validate these inference rules may require the use of
higher-order provers such as Isabelle/HOL [1] or PVS [8].

5 Theories, Contexts and Machines

A theory T1 can see another theory T0; this makes all that is specified in T0 accessible to T1. All the
theories seen by T0 will also be available to T1. On the subject of the relationship between the two
modelling constructs (contexts and machines) and theories, project-wide and tool-wide accessibility of
theories will be investigated.
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6 Rewrite Rules

Rewrite rules are used in the same way as inference rules to construct proofs of sequents. To illustrate
this point, the following rewrite rule:

{x · x ∈ S | x} =̂ S (R∆)

with x not free in S, can be used in the following way:

−→
H, P (S) ` R

−→
H, P ({x · x ∈ S | x}) ` R

(I∆h
)

and
−→
H ` R(S)

−→
H ` R({x · x ∈ S | x})

(I∆g)

where
−→
H is a list of predicates, P and R are predicates and x is not free in S.

Note. For the time being, we use the following understanding of (I∆g) and (I∆h
). P ({x · x ∈ S | x})

(under the line) denotes a predicate P with a sub-term {x ·x ∈ S | x}. Given P ({x ·x ∈ S | x}), P (S)
(above the line) denotes P with a specific occurrence of {x · x ∈ S | x} replaced by S.

The rewrite rule representation is simpler and more compact than that of inference rules. In this
section, we analyse what makes a valid rewrite rule. Further research will be carried out on issues
related to rules applicability. Here, we use the symbol =̂ to denote rewriting.

We recall that the Event-B mathematical language distinguishes between predicates and expressions
as two separate syntactic categories. In the next two sub-sections, we present two types of rewrite
rules. The last sub-section deals with the general issues related to the applicability of rewrite rules.

6.1 Unconditional Rewrite Rules

Definition 6.1. An unconditional rewrite rule is of the form

lhs =̂ rhs

where lhs and rhs are formulas of the same syntactic class in the Event-B mathematical language,
and rhs only contains free variables from lhs. If lhs is an expression, then

type(lhs) = type(rhs).

Definition 6.2. A type environment of a rewrite rule r, denoted env(r), provides typing conditions
for all the free variables occurring in the rewrite rule.

Definition 6.3. An unconditional rewrite rule r of the form lhs =̂ rhs with a type environment
env(r), is valid provided the following sequents are valid:

1. [hyp, WD(lhs) ` WD(rhs)] where hyp includes typing conditions according to env(r).

2. [hyp , WD(lhs) ` lhs = rhs] if lhs is an expression, or;
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3. [hyp , WD(lhs) ` lhs⇔ rhs] if lhs is a predicate.

Condition (1) simply states that the right hand side of a rewrite rule should not be less well-defined
than its left hand side. That is, a valid rewrite rule preserves well-definedness. The type environment
env is important especially with rules that involve supertypes.

6.2 Conditional Rewrite Rules

Rewrite rules can be conditional. As an example, consider

card(i..j) =̂ i ≤ j : j − i+ 1 (CR∆)
i > j : 0

where i ∈ Z and j ∈ Z. This rule simply states that card(i..j) can be rewritten to j − i + 1 if i ≤ j
and 0 otherwise. We have the following definitions:

Definition 6.4. A conditional rewrite rule is of the form

lhs =̂ C1 : rhs1

...

Cn : rhsn

where:

1. lhs and rhsi (for all i ∈ 1..n and n ≥ 1) are formulas of the same syntactic class in the Event-B
mathematical language.

2. Ci (for all i ∈ 1..n) are predicates.

3. type(lhs) = type(rhsi) (for all i ∈ 1..n) if lhs is an expression.

4. Ci (for all i ∈ 1..n) only contain free variables from lhs.

5. rhsi (for all i ∈ 1..n) only contain free variables from lhs.

Definition 6.5. A conditional rewrite rule r of the form

lhs =̂ C1 : rhs1

...

Cn : rhsn

with a type environment env(r), is valid provided the following sequents are valid:

1. [hyp, WD(lhs) ` WD(Ci)] for all i ∈ 1..n and hyp includes typing conditions according to
env(r) .

2. [hyp, WD(lhs), Ci ` WD(rhsi)] for all i ∈ 1..n.

3. [hyp, WD(lhs), Ci ` lhs = rhsi] for all i ∈ 1..n if lhs is an expression, or;

4. [hyp, WD(lhs), Ci ` lhs⇔ rhsi] for all i ∈ 1..n if lhs is a predicate.
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6.3 Applying Rewrite Rules

Consider the following expression in the mathematical language

{x · x ∈ N ∪ {x} | x}.

Applying rule (R∆) to the previous expression yields N ∪ {x}. This is evidently invalid because the
side condition that x is not free in S, is not respected. Therefore, an application of a valid rule is
valid only when its side conditions are met.

6.3.1 Applying Unconditional Rewrite Rules

Generally speaking, applying the valid rule

lhs =̂ rhs

to the sequents

−→
H, P (lhs) ` R

−→
H ` R(lhs)

yields the following inference rules

−→
H, P (rhs) ` R
−→
H, P (lhs) ` R
−→
H ` R(rhs)
−→
H ` R(lhs)

respectively, given that the side conditions of the rule hold for lhs.

6.3.2 Applying Conditional Rewrite Rules

Applying conditional rewrite rules is more complex given their more elaborate structure. Similarly
to unconditional rules, they can be applied to both the goal and hypotheses of a sequent. In our
discussion, we distinguish between hypotheses and goal application of a rule. Consider the valid rule:

lhs =̂ C1 : rhs1

...

Cn : rhsn

1. Hypotheses Application: Applying the rule to the sequent

−→
H, P (lhs) ` R

yields the inference rule

−→
H, C1, P (rhs1) ` R ...

−→
H, Cn, P (rhsn) ` R

−→
H, ¬(C1 ∨ ... ∨ Cn), P (lhs) ` R

−→
H, P (lhs) ` R
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given that the side conditions of the rule hold for lhs.

2. Goal Application: Applying the rule to the sequent

−→
H ` R(lhs)

yields the following inference rule

−→
H, C1 ` R(rhs1) ...

−→
H, Cn ` R(rhsn)

−→
H, ¬(C1 ∨ ... ∨ Cn) ` R(lhs)

−→
H ` R(lhs)

given that the side conditions of the rule hold for lhs.

6.3.3 Side Conditions

Consider the sequent

−→
H,

P (lhs)︷ ︸︸ ︷
∀i · i ∈ N⇒ (∃j · j ∈ N ∧ card(i..j)︸ ︷︷ ︸

lhs

= 2) ` R.

Clearly, rule (CR∆) cannot be applied in the way we outlined in §6.3.2. This is due to the fact that i
and j are bound within P (lhs), and cannot be taken out to form the conditions i ≤ j and i > j. The
same issue arises with the following sequent:

−→
H `

R(lhs)︷ ︸︸ ︷
∀i · i ∈ N⇒ (∃j · j ∈ N ∧ card(i..j)︸ ︷︷ ︸

lhs

= 2) .

It is tempting to think that if i and j were defined in
−→
H , it would be possible to apply the rule.

However, in the general case, introducing the new conditions Ci (for all i ∈ 1..n) poses further
challenges in terms of maintaining the well-definedness of the involved sequents. One objective of this
research is to clarify this type of side conditions. The possibility of automating applicability checking
(.i.e. relieving the theory developer from specifying side conditions) will also be investigated. Other
types of side conditions include (examplified by rules):

• S ⊆ Ty =̂ > with the condition that Ty is a type expression. This side condition can be
enforced by making the pattern matching engine observe the typing environment of the rule.

• S ⊆ {x · P (x) | x} =̂ ∀y · y ∈ S ⇒ P (y) with the condition that y is not free in S and
{x ·P (x) | x}. This condition can be enforced by choosing a fresh name for y everytime the rule
is applied.

7 Important Considerations

• The theory developer’s job can be made more effective by employing an automatic type inference
procedure. However, this may be a little out of reach. In-place typing of free identifiers (using
the theory as well as other built-in sets) can greatly ease the task of specifying rewrite rules. For
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instance, assuming the availability of a set T , one can specify the rewrite rule (S : P(T ))∩T =̂ S
where ”:” denotes the in-place typing of S.

• Side conditions are of extreme importance to the soundness of the prover. Some side conditions
can be automatically enforced, whereas others may require the theory developer to specify them
as a part of defining the rule. Research will be carried out to address this particular issue.

• In section §6.3.2, no assumption is made about the completeness (i.e., C1 ∨ ... ∨Cn⇔>) of the
conditional rule to be applied. It may be useful to give the theory developer the power to assert
whether a rule is complete. If so, another proof obligation will be generated to verify the claim
of completeness. The proof obligation is:

[hyp, WD(lhs) ` C1 ∨ ... ∨ Cn] for all i ∈ 1..n and n ≥ 1.

If the proof obligation is discharged, the prover could be made aware of the completeness of the
rule. In that case, it is sound to apply the rule according to:

−→
H, C1, P (rhs1) ` R ...

−→
H, Cn, P (rhsn) ` R

−→
H, P (lhs) ` R

and
−→
H, C1 ` R(rhs1) ...

−→
H, Cn ` R(rhsn)

−→
H ` R(lhs)

for hypotheses and goal application respectively.

• Another consideration of a more practical nature is the importance of distinguishing between
theory development and theory deployment. Theory development refers to the activity of speci-
fying the theory elements, the static checking, proof obligation generation as well as discharging
the resulting proof obligations (for rewrite rules, these are discussed in 6.1 and 6.2). Theory
deployment refers to the subsequent step of making statically checked and verified theories avail-
able to the prover. This is analogous to the process by which Java libraries are developed and
deployed. The use of a similar approach to Java’s classpath will be investigated.

• In addition to side conditions, there are other issues related to rewrite rules applicability. Some
rewrite rules make formulas within sequents grow considerably. Multiplication distribution over
addition, for instance, is an example of such expansive rules. These rules should not be applied
automatically as they do not simplify formulas, they expand them. Permutative rules (e.g.,
commutativity law for addition) can also be dangerous to apply in an automatic fashion. These
types of rules, however, should be candidate for manual (interactive) application.

8 Related Work

The theorem prover Isabelle [11] provides a fragment of higher order logic that can be used as a
meta-logic for specifying other logics. Isabelle/HOL refers to the specialisation of Isabelle to higher
order logic, whereas Isabelle/ZF is the one for ZF set theory. The syntax as well as the rules of the
derived logics are specified in the meta-logic [12]. This provides an effective mechanism for extending
the derived logics.
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In Isabelle/HOL, the simplifier can be augmented with new simplification rules using the meta-logic
directive [simp], e.g.,

theorem thm1[simp]: "rev(rev xs) = xs"

Note that in Isabelle/HOL theories the meta-logic and the object logic syntax co-exist. This is however
undesirable for Event-B constructs since we want to maintain a clear separation between the activity
of modelling and the activity of extending the logic of modelling.

9 Summary

In this report, we discussed possible extensions to the Event-B language and the Rodin tool. Our
work will initially focus on adding the facility to extend the prover’s rule base with rewrite rules
(conditional and unconditional) within the existing architecture of Rodin. We will then elaborate the
treatment and implementation of general inference rules and new operator definitions in Rodin. These
will require the addition of predicate variables to the mathematical language and the ability for the
user to define new mathematical operators. The proposed Theory construct will be a step forward
in terms of realising the many extensions envisaged in [4]. The proof obligations generated from the
new construct will ensure that the soundness of the prover is not compromised by adding new rules.
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