Contents

1 Book Layout and Guide

2 System Modelling and Design
 2.1 Software Engineering, not Programming
 2.2 Mathematics, not Magic
 2.3 Background and Timeline

3 Contexts, Machines, State, Events, Proof and Refinement
 3.1 Machines
 3.2 Refinement
 3.3 Animation

4 Refinement
 4.1 An example: Square root
 4.2 Modelling a parametric argument

5 Further reading
Chapter 1

Book Layout and Guide

This book contains Event-B examples designed to be used with the Rodin toolkit. The source text for the models is embedded in the book text, for example:

MACHINE CoffeeClub

VARIABLES piggybank

This machine state is represented by the variable, piggybank, denoting a supply of money for the coffee club.

INVARIANTS

inv1: piggybank ∈ \mathbb{N} piggybank must be a natural number

END CoffeeClub
Chapter 2

System Modelling and Design

This book is concerned with the verification of system design using system modelling. The modelling will be carried out in a rigorous way that allows us to quantitatively explore the proposed behaviour of a design.

It is important to understand that in order to explore a design we will be concerned with what happens, when it happens and what changes of state are associated with an event.

Generally, designs will be presented through many layers of abstraction called refinements. Refinements allow us to introduce more details of the design and to expose new levels of a system with extra functionality.

2.1 Software Engineering, not Programming

While the modelling we will discuss is not restricted to software systems, there will be some parts of systems that will be implemented as software. We are concerned to emphasise an engineering approach to system design in general and to software system design in particular, in contrast to the more common code and test approach. Due to the discrete nature of digital computers, testing of software can be particularly weak due to the lack of ability to interpolate or extrapolate on test results. Traditional engineering disciplines generally work in continuous domains that allow interpolation, and maybe extrapolation. In civil engineering, for example, it will generally be the case that a beam that does not fail under a 100 tonne load will not fail under a 50 tonne load. There is no similar expectation for software. This is not an argument against testing, it is an argument against non-rigorous verification.

It’s also worth noting that software is intrinsically unstable in the following sense. The physical implementation of a conventional engineering design can never be exact: components of a civil engineering structure or an electrical engineering device will never be precisely as specified in the design. What then generally happens is that the structure will distort slightly and reach a stable equilibrium configuration. As the reader with any software experience will be well aware, software —generally— does not behave in that way: if part of a software implementation is not exact then the software will most probably collapse. That is, it is unstable. Hence, near enough is never good enough. Note: any error recovery strategy must be explicitly added to the software; it is not provided automatically by the environment.

Engineering design should be rigorous, and given the above observations it would seem that this especially needs to be the case for software design. Ironically this is often —perhaps usually— not the case.

The approach adopted in this book will emphasise rigorous design, meaning that a design will be subjected to a rigorous, mathematical quantification of the required behaviour of a system and efforts will be made to ensure that the design does satisfy the requirements.

3
CHAPTER 2. SYSTEM MODELLING AND DESIGN

2.2 Mathematics, not Magic

We will be using mathematics, as is perfectly normal for other engineering disciplines. Because of the discrete nature of the descriptions that we need to represent we will be using set theory and logic and verification will involve the use of proof. To assist with proof we will use theorem provers. In many areas this type of design has been referred to as formal methods. We will not use that term; we prefer simply mathematics. In particular we wish to avoid any suggestion that proof equals correct, or even more extreme that because our designs have been proved they can never fail. We recognise that any engineering design can fail, however the designer should be aware of the conditions under which it may fail.

Requirements need to be interpreted and then quantified in order to be able to reason about the realisation of the requirements. For any system, our objective will be to give a rigorous statement of our assumptions and rigorous arguments that our design satisfies the requirements for the system.

2.3 Background and Timeline

The following is an abbreviated timeline of important contributions to the understanding of computer programs.

1960 John Backus & Peter Naur [5], Backus-Naur Form (BNF) for specifying syntax
1967 Robert Floyd [9], Assigning Meanings to Programs
1969 CAR Hoare [12], An Axiomatice Basis for Computer Programming
1976 Edsger Dijkstra [7], correct by construction
1980 Cliff Jones [13, 14], VDM
1983 Niklaus Wirth [24], stepwise refinement
1987 Ralph Back [3, 4], A calculus of refinement for program for program derivation
1987 Ian Hayes [11], Z case studies
1990 Carroll Morgan [15], Specification statement
1996 Jean-Raymond Abrial [1], Classical B: Assignment Programs to Meanings
1989 Michael Spivey [17, 18], Z
2010 Jean-Raymond Abrial [2], System and Software Engineering
Chapter 3

Contexts, Machines, State, Events, Proof and Refinement

This chapter will explore a very simple model in order to gain some familiarity with modelling using Event-B.

The model is intended to be very elementary, but it will introduce many aspects of modelling in Event-B including a very simple—and probably unexpected—instance of refinement. This will throw into relief one basic aspect of refinement.

The basic concepts of Event-B will be introduced in this chapter, and the reader is encouraged to install Rodin—the Event-B toolkit, see [8]—and copy the model developed in this chapter, as your first exercise.

Models in Event-B are described in terms of contexts and machines

Contexts define constants that are either numeric or sets. Within a context, constants are declared and their properties and relationships are defined by axioms and theorems. Axioms describe properties that cannot be derived from other axioms. Theorems describe properties that are expected to be able to be derived from the axioms.

Machines: define dynamic behaviour. A machine may see one or more contexts and have a state and events. The state is represented by variables, whose types and behaviour are defined by invariants and theorems. Events model “things that may happen” in the context of the machine. An event is represented by parameters, which are simply symbolic names for values; guards, which express the conditions of the state and parameters under which the event may fire; and actions, which describe the change of state that occurs when the event does fire.

3.1 Machines

It is important to understand that machines should not be thought of as software programs—although they might be implemented by software. The machine models a state and the events representing behaviour that could occur; the conditions that must apply if an event occurs; and the effect the event has on the state. As such, a machine gives a representation of possible behaviours of some system.

CoffeeClub

The elementary description of machines will be illustrated with a simple running example of a coffee club. We will introduce a machine that will be used to model some of the desired facilities of the coffee
CHAPTER 3. CONTEXTS, MACHINES, STATE, EVENTS, PROOF AND REFINEMENT

club.

MACHINE CoffeeClub

VARIABLES
piggybank This machine state is represented by the variable, piggybank, denoting a supply of money for the coffee club.

INvariants
inv1: piggybank ∈ N piggybank must be a natural number

The invariants specify the properties that the variables (the state) must satisfy before and after every event, excepting the initialisation where the invariants must be satisfied after the initialisation.

EVENTS

Events model what can happen in the machine; the conditions under which they can happen; and how the state of the machine is changed by the event.

Initialisation ≜
Initialisation is a distinguished event that occurs once only, before any other event. This event initialises the machine’s variables to a set of values that establishes the invariant. Remember that the variables do not have any value before initialisation.

THEN
act1: piggybank := 0 Could initialise piggybank to any natural number

END

FeedBank ≜
ANY
amount amount to be added to piggybank
WHERE
grd1: amount ∈ N \[1\] if amount were 0 then this event could always fire

THEN
act1: piggybank := piggybank + amount

END

Notation

\[\in\] set membership
\[\mathbb{N}, \mathbb{NAT}\] the set of natural numbers = non-negative integers

\[\mathbf{:=}\] "becomes equal to": \(x := e\) means assign to the variable \(x\) the value of the expression \(e\)

\[\mathbb{N}_{\[1\]}, \mathbb{NAT}_{\[1\]}\] the set of non-zero natural numbers
3.1. MACHINES

RobBank ≡

\begin{align*}
\text{ANY} \\
\text{amount} \\
\text{WHERE} \\
\text{grd1: } & \text{amount } \in \mathbb{N} \\
\text{grd2: } & \text{amount } \leq \text{piggybank} \quad \text{There must be enough in the piggybank} \\
\text{THEN} \\
\text{act1: } & \text{piggybank} := \text{piggybank} - \text{amount}
\end{align*}

Proof Obligations: Sequent representation

As the specification of the model is expressed in mathematics it is possible to generate checks to show that the behaviour of the model is consistent with the formal constraints of the model. To achieve this the Event-B workbench, Rodin, generates proof obligations (PO) that can be checked with a prover, or even verified visually.

There are many classes of POs, (see Appendix B for a discussion of all types of POs).

Proof obligations will be represented by a sequent having the following form:

\[
\text{hypotheses} \vdash \text{goal}
\]

Figure 3.1: Sequent representation of PO

The meaning of the PO shown in 3.1 is

the truth of the hypotheses leads to the truth of the goal.

The symbol \(\vdash \) is sometimes called stile or turnstile. Note:

1. If any of the hypotheses is \(\bot \) then any goal is trivially established.
2. If the hypotheses are identically \(\top \) then the hypotheses will be omitted.

Notation

\[
\begin{array}{ccc}
\text{math} & \text{ascii} \\
\leq & \text{<=} & \text{less than or equal}
\end{array}
\]

CoffeeClub
Proof Obligations for CoffeeClub

CoffeeClub is a very simple model and the POs are correspondingly simple. It is very easy to see that the POs are satisfiable without resort to a theorem prover. As a consequence the POs are easily discharged automatically by the provers in the Rodin tool.

The following POs are generated for the above machine.

INITIALISATION/inv1/INV: \(\vdash 0 \in \mathbb{N} \)

This is requesting a proof that the initialisation, \(\text{piggybank} := 0 \), establishes the invariant \(\text{piggybank} \in \mathbb{N} \).

FeedBank/inv1/INV:

\[
\begin{align*}
\text{piggybank} &\in \mathbb{N} \\
\text{amount} &\in \mathbb{N} \\
\vdash \text{piggybank} + \text{amount} \in \mathbb{N}
\end{align*}
\]

This is requesting a proof that the actions of FeedBank, \(\text{piggybank} := \text{piggybank} + \text{amount} \) maintains the invariant, \(\text{piggybank} \in \mathbb{N} \). This is clearly true as both \(\text{piggybank} \) and \(\text{amount} \) are natural numbers.

RobBank/inv1/INV:

\[
\begin{align*}
\text{piggybank} &\in \mathbb{N} \\
\text{amount} &\in \mathbb{N} \\
\vdash \text{piggybank} - \text{amount} \in \mathbb{N} \\
\text{amount} &\leq \text{piggybank}
\end{align*}
\]

Similar to the preceding POs, but this time verifying that \(\text{piggybank} \in \mathbb{N} \) is maintained after the action \(\text{piggybank} := \text{piggybank} - \text{amount} \). This is not quite so simple, but the guard \(\text{amount} \leq \text{piggybank} \) ensures the invariant is maintained.

What you need to know to discharge POs

The first mistake that many people make when faced with discharging a PO, is believing that there is some other information they need. While it may turn out that some extra information is required, it should be appreciated that the information presented as in the above POs is “complete”. Complete that is, excepting the axioms relating to numbers, predicates and logic. It is very important to understand that the consequent should be proveable from the given hypotheses; there is nothing else in the form of a hypothesis that should be required. If the PO cannot be discharged then there are many cases that must be considered, of which

- the invariants are too strong/weak
- the guards are too weak/strong;
- the actions are inappropriate/incomplete

are some possibilities. The problem may go back to the context, which might be wrong/incomplete, etc.

Proof is syntactic

Discharging a PO is essentially a syntactic exercise: the proof is concerned with symbols and their properties. Again, many coming to this for the first time may try to reason on the basis of what an event is doing to the state, or similar types of reasoning. Such reasoning is almost certainly useless, and counter productive.
3.2 Refinement

Refinement is a process that is used describe any or all of the following changes to a model:

extended functionality: we add more functionality to the model, perhaps modelling the requirements for a system in *layers*;

more detail: we give a finer-grained model of the events. This is often described as moving from the *abstract* to the *concrete*. This form of refinement tends to move from *what* towards *how*;

changing state model: we change the way that the state is modelled, but also describe how the new state models the old state.

In all cases of refinement, the behaviour of the refined machine must be *consistent* with the behaviour of the machine being refined. It is important to appreciate that *consistent* does not mean *equivalent*: the behaviour of the refined machine does not have to be the same, but the behaviour must not contradict the behaviour of the machine being refined. As an example, machines may be —and frequently are— nondeterministic and the refined machine may remove some of the nondeterminism.

Refinement machine

The refinement machine consists of:

- **a refined state:** that is logically a new state. The refined state must contain a *refinement relation* that expresses how the refined state models the state being refined. The refined state may contain variables that are syntactically and semantically equivalent to variables in the state of the machine being refined. In that case, the *new* and *old* variables are implicitly related by an equivalence relation.

- **refined events:** that logically refine the events of the refined machine. The refined events are considered to *simulate* the behaviour of the events being refined, where the effects of the refined events are interpreted through the refinement relation.

- **new events:** that add new functionality to the model. The new events must not add behaviour that is inconsistent with the behaviour of the refined machine.

Refinement rules

As mentioned above, refinement requires *consistency*. This means that any behaviour of a refined event must be *acceptable behaviour* of the unrefined event in the unrefined model. An informal example of this is:

> if at a restaurant you asked for a Pepsi *or* a Coke, then it would be acceptable for you to be given a Coke, but not acceptable for you to be given a Fanta.

The following rules apply to refinement:

strengthen guards and invariants: guards and invariants can be strengthened, provided overall functionality is not reduced;

nondeterminism can be reduced: where a model offers choice, then the choice can be reduced in the refinement;

the state may be augmented by an orthogonal state: new state variables, whose values do not affect the existing state, may be added.
Consistently with the above, a single event may be refined by multiple events, or conversely, multiple events may be refined a single event.

New events As well as refinements of the events of the machine being refined, the refined machine may introduce new events, but the new events **must not** change the state of any included from the refined machine. This is a restriction that recognises that a machine state can be modified only by the events of that machine, or their refinements.

Refinement of the CoffeeClub

At the moment the CoffeeClub simply describes a piggybank that models an amount (of money), and events that describe adding to — FeedBank — or taking from — RobBank — the amount modelled by piggybank. We will now model behaviour that describes club-like behaviour for members who want to be able to purchase cups of coffee. We will introduce variables members, accounts and coffeeprice and events that correspond to

- **a new member joining the club**: each member of the club is represented by a unique identifier that is arbitrarily chosen from an abstract set MEMBER;
- **a member adding money to their account**: each member has an account, to which they can add “money”;
- **a member buying a cup of coffee**: there will be a variable, coffeeprice, representing the cost of a cup of coffee, and each member can buy a cup of coffee provided they have enough money in their account.

The value of all money added to accounts is added to piggybank.

Contexts Contexts are used in Event-B to define constant values such as abstract sets, relations, functions; properties of those constants, called axioms and theorems expressing properties of the constants that can be deduced from the axioms. The abstract sets are sometimes called carrier sets.

<table>
<thead>
<tr>
<th>Concepts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>axiom</td>
<td>an axiom is a property that is asserted; it cannot be proved</td>
</tr>
<tr>
<td>theorem</td>
<td>a theorem is a property that is implied by axioms or invariants; it must be proved</td>
</tr>
</tbody>
</table>

For this refinement we need to define an abstract set MEMBER, which we will use as the source of unique identifiers for members. The set is not given a specific size (cardinality), but it is declared to be finite, meaning that it does have a size (cardinality) that is a natural number. Sets are potentially infinite, unless declared otherwise. Note that in Event-B infinity is not a natural number.

Context MembersContext

```plaintext
CONTEXT MembersContext
SETS
MEMBER
AXIOMS
  axm1: finite(MEMBER)
END
```
3.2. REFINEMENT

Concepts
SETS Sets declared in SETS clause of a context are non-empty, opaque sets.

Notation
math ascii
finite finite finite(S) is \top if the set S is finite. This does not require the set to have a specific size, but the set must have a size

Refinement Membership

The refinement Membership is clearly aimed at adding new functionality, rather than refining the current functionality. For that reason all events will be displayed in extended mode, a mode supported by Rodin. In extended mode, only the new parameters, guards and actions are displayed, that is, only the parts of an event that extend the event being refined.

It should be clear that the events FeedBank and RobBank are unchanged in the refinement, but NewMember, SetPrice, BuyCoffee and Contribute are new. For that reason FeedBank and RobBank will be omitted here. They can be found in the appendix A.1.

MACHINE Membership
REFINES
CoffeeClub
SEES
MembersContext

VARIABLES
piggybank
members the set of current members
accounts the member accounts
coffeeprice the price of a cup of coffee

ININVARIANTS
inv1: piggybank $\in \mathbb{N}$
inv2: members $\subseteq MEMBER$ each member has unique id
inv3: accounts \in members $\rightarrow \mathbb{N}$ each member has an account
inv4: coffeeprice $\in \mathbb{N}$1 any price other than free!

Notation
math ascii
\subseteq \subset: subset \subset or equal $=$
\subset \subset: strict subset: not equal
\rightarrow \rightarrow: denotes a total function. If $f \in X \rightarrow Y$ and $x \in X$, then $f(x)$ is defined.
\rightarrow \rightarrow: denotes a partial function. If $f \in X \rightarrow Y$ and $x \in X$, then $f(x)$ is not necessarily defined.

EVENTS
Initialisation: extended \equiv
THEN
act2: members := \emptyset empty set of members
act3: accounts := \emptyset empty set of accounts
act4: coffeeprice $\in \mathbb{N}$1 initial coffee price set to arbitrary non-zero value
END
CHAPTER 3. CONTEXTS, MACHINES, STATE, EVENTS, PROOF AND REFINEMENT

Notation

<table>
<thead>
<tr>
<th>math</th>
<th>ascii</th>
</tr>
</thead>
<tbody>
<tr>
<td>∈</td>
<td>"becomes in": $x \in e$ means assign to x any element of the set e</td>
</tr>
<tr>
<td>∅</td>
<td>{} empty set</td>
</tr>
</tbody>
</table>

SetPrice

ANY

WHERE

grd1: amount \in N1

THEN

act1: coffeeprice := amount

END

NewMember

ANY

WHERE

grd1: member \in MEMBER \setminus members choose an unused element of MEMBER

THEN

act1: members := members \cup \{member\}

act2: accounts(member) := 0

END

Notation

<table>
<thead>
<tr>
<th>math</th>
<th>ascii</th>
</tr>
</thead>
<tbody>
<tr>
<td>\setminus \ set subtraction: $S \setminus T$ is the set of elements in S that are not in T</td>
<td></td>
</tr>
<tr>
<td>\cup \ set union: $S \cup T$ is the set of elements that are in either S or T</td>
<td></td>
</tr>
</tbody>
</table>

Contribute

ANY

WHERE

grd1: amount \in N1

grd2: member \in members

THEN

act1: accounts(member) := accounts(member) + amount

act2: piggybank := piggybank + amount

END

BuyCoffee

ANY

WHERE

grd1: member \in members

grd2: accounts(member) \geq coffeeprice

end
3.2. REFINEMENT

\[\text{THEN} \]
\[\text{act1: } \text{accounts}(\text{member}) := \text{accounts}(\text{member}) - \text{coffeeprice} \]
\[\text{END} \]

\text{FeedBank: } extended \triangleq
\text{REFINES FeedBank}
\text{ANY}
\text{WHERE}
\text{THEN}
\text{END}

\text{RobBank: } extended \triangleq
\text{REFINES RobBank}
\text{ANY}
\text{WHERE}
\text{THEN}
\text{END}

\text{END MemberShip}

\textbf{Proof Obligations}

\text{INITIALISATION:inv1/INV: } \vdash 0 \in \mathbb{N}

\text{INITIALISATION:inv3/INV: } \vdash \emptyset \in \emptyset \rightarrow \mathbb{N}

\text{INITIALISATION:inv4/INV: } \text{coffeeprice}' \in \mathbb{N} \vdash \text{coffeeprice}' \in \mathbb{N}

\text{INITIALISATION:act4/FIS: } \vdash \mathbb{N} \neq \emptyset

\text{SetPrice/inv4/INV: } \begin{cases} \text{coffeeprice} \in \mathbb{N} \\ \text{amount} \in \mathbb{N} \end{cases} \vdash \text{amount} \in \mathbb{N}

\text{NewMember/inv3/INV: } \begin{cases} \text{accounts} \subseteq \text{members} \rightarrow \mathbb{N} \\ \text{member} \in \text{MEMBER} \setminus \text{members} \end{cases} \vdash \begin{cases} \text{accounts} \in \{ \text{member} \mapsto 0 \} \\ \text{member} \in \text{members} \cup \{ \text{member} \} \rightarrow \mathbb{N} \end{cases}
Contribute/inv1/INV:

\[
\begin{align*}
\text{piggybank} & \in \mathbb{N} \\
\text{amount} & \in \mathbb{N} \\
\text{member} & \in \text{members}
\end{align*}
\]

\[\text{piggybank} + \text{amount} \in \mathbb{N} \]

Contribute/inv3/INV:

\[
\begin{align*}
\text{account} & \in \text{members} \rightarrow \mathbb{N} \\
\text{amount} & \in \mathbb{N} \\
\text{member} & \in \text{members}
\end{align*}
\]

\[\text{accounts} \leftarrow \{ \text{member} \mapsto \text{accounts}(\text{member}) + \text{amount} \} \]

Contribute/piggybank/EQL:

\[
\begin{align*}
\text{amount} & \in \mathbb{N} \\
\text{member} & \in \text{members}
\end{align*}
\]

\[\text{piggybank} = \text{piggybank} + \text{amount} \]

Contribute/act2/WD:

\[
\begin{align*}
\text{amount} & \in \mathbb{N} \\
\text{member} & \in \text{members}
\end{align*}
\]

\[\text{member} \in \text{dom} (\text{accounts}) \land \text{accounts} \in \text{MEMBER} \rightarrow \mathbb{Z} \]

BuyCoffee/grd2/WD:

\[\text{member} \in \text{members} \]

\[\text{member} \in \text{dom} (\text{accounts}) \land \text{accounts} \in \text{MEMBER} \rightarrow \mathbb{Z} \]

BuyCoffee/inv3/INV:

\[
\begin{align*}
\text{accounts} & \in \text{members} \rightarrow \mathbb{N} \\
\text{member} & \in \text{members} \\
\text{accounts}(\text{member}) & \geq \text{coffeeprice}
\end{align*}
\]

\[\text{accounts} \leftarrow \{ \text{member} \mapsto \text{accounts}(\text{member}) - \text{coffeeprice} \} \]

\[\in \]

\[\text{members} \rightarrow \mathbb{N} \]

BuyCoffee/act1/WD:

\[\text{member} \in \text{members} \]

\[\text{member} \in \text{dom} (\text{accounts}) \land \text{accounts} \in \text{MEMBER} \rightarrow \mathbb{Z} \]

Notation

\[
\begin{align*}
\neq & \quad /= \quad a \neq b = a \text{ is not equal to } b \\
\mapsto & \quad |-> \quad a \mapsto b \text{ (a maps to b) is the ordered pair of } a \text{ and } b
\end{align*}
\]

The proof obligations contain a surprise: Contribute/piggybank/EQL on action \(\text{piggybank} := \text{piggybank} + \text{amount} \) cannot be discharged by the auto-prover.

This EQL PO requires a proof that \(\text{piggybank} \) is not changed, but of course, \(\text{piggybank} := \text{piggybank} + \text{amount} \) must change the value of the variable \(\text{piggybank} \), unless \(\text{amount} \) is 0.

What is that all about?

Contribute appears in the refinement as a new event, but here it is changing the value of the variable \(\text{piggybank} \), which is part of the state of CoffeeClub, the machine being refined.

In order to preserve consistency, any event of a refinement that modifies the state of the machine being refined must itself be a refinement of one or more events of the machine being refined.
Solution The event \textit{FeedBank} of \textit{CoffeeClub} changes the value of the variable \textit{piggybank} in a similar way to contribute, thus \textit{Contribute} must be seen as a refinement of \textit{FeedBank} and \textit{Contribute} should be defined as follows.

\begin{verbatim}
Contribute \equiv
 \text{REFINES FeedBank}
 \text{ANY member}
 \text{WHERE }
 \text{grd1: member} \in \text{members}
 \text{THEN }
 \text{act1: accounts}(\text{member}) := \text{accounts}(\text{member}) + \text{amount}
 \text{act2: piggybank} := \text{piggybank} + \text{amount}
\end{verbatim}

This removes the EQL PO, and there is an important lesson in this example. In most —if not all— cases the presence of EQL POs will probably indicate a bad refinement.

What are the new POs?

There are a number of INV POs, but the following are new:

\text{INITIALISATION:act4/FIS: } N_1 \neq \emptyset

\text{Contribute/act2/WD:}
 \text{member} \in \text{dom(accounts)} \land \text{accounts} \in \text{MEMBER} \rightarrow N_1

\text{BuyCoffee/grd2/WD:}
 \text{member} \in \text{dom(accounts)} \land \text{accounts} \in \text{MEMBER} \rightarrow N_1

\text{BuyCoffee/act1/WD:}
 \text{member} \in \text{dom(accounts)} \land \text{accounts} \in \text{MEMBER} \rightarrow N_1

\text{FIS} is concerned with feasibility, deriving in this case from the initialisation

\[\text{coffeeprice}' \in N_1 \]

This will be only feasible if \(N_1 \neq \emptyset \), which of course is trivially true.

\text{WD} is concerned with well-definedness. Such POs are concerned with showing that an expression is well defined. In this case they all derive from expression containing \(f(x) \), which will only be well-defined if \(x \in \text{dom}(f) \), in this case \text{member} \in \text{dom(accounts)}. This is guaranteed by the guard \text{member} \in \text{members} and the invariant \text{accounts} \in \text{member} \rightarrow N.
CHAPTER 3. CONTEXTS, MACHINES, STATE, EVENTS, PROOF AND REFINEMENT

Concepts

well-defined

some expressions, especially function applications, may not be defined everywhere. For example, $f(x)$ is only defined if x is in the domain of f, i.e., $x \in \text{dom}(f)$.

feasibility

specifying a property with a predicate does not carry with it the promise that there exist solutions that satisfy the predicate. For example $x + 1 = x - 1$ cannot be satisfied by any $x \in \mathbb{N}$. Feasibility is concerned with showing that instances that satisfy a predicate do exist. Feasibility can be extremely difficult to prove and many famous conjectures, for example Fermat’s last theorem and the four colour problem, have been solved only recently. Fermat’s last theorem was unsolved for over 300 years.

3.3 Animation

The process of modelling that is being described here is concerned with ensuring that the model that is being developed is consistent across the development. There is one flaw:

the analysis of the informally presented requirements cannot be formalised.

Animation is a useful technique that provides for correlation of behaviour with the requirements. It should be appreciated that animation is not a substitute for rigorous verification using proof. Animation and rigorous modelling are complementary. In particular, animation provides a strategy for explaining your model to someone who does not understand Event-B. Animation is also useful to the modeller for obtaining a view of the behaviour of the events in the model.

AnimB is a very good animation plugin for the Rodin platform. AnimB is interesting because it provides a number of different ways of animating, all of which can be mixed.

At each step in animation AnimB shows which events are enabled. Then the person running the animation has the following choices:

1. choose the event and the values of any parameters;
2. choose the event and let the animator choose the values of the parameters nondeterministically;
3. let the animator choose the event and the parameters nondeterministically.

Animation Constraints

Animators generally, and AnimB in particular impose a stronger finiteness constraint than the finiteness constraints imposed by Event-B. If MemberShip is animated with AnimB, it will be found that the type of piggybank, namely \mathbb{N}, is unsatisfactory. AnimB requires a subrange of \mathbb{N}, hence we will have to specify a maximum amount for piggybank, MAXBANK, and then specify piggybank as a subrange $0 \ldots \text{MAXBANK}$. As a consequence various guards also have to be modified. The following shows a modified version of CoffeeClub and a context PiggyBank in which MAXBANK is given the (arbitrary) value 1000.

```
context PiggyBank

constants

MAXBANK

axioms

axm1: \( \text{MAXBANK} \in \mathbb{N} \)

AnimB

MAXBANK 1000
```
3.3. ANIMATION

MACHINE CoffeeClub
SEES PiggyBank
VARIABLES piggybank
INVARIANTS
inv1: piggybank ∈ 0..MAXBANK
EVENTS
Initialisation ≡ THEN
act1: piggybank := 0
END

FeedBank ≡ ANY
 amount
WHERE
 grd1: amount ∈ 1..MAXBANK − piggybank
THEN
 act1: piggybank := piggybank + amount
END

RobBank ≡ ANY
 amount
WHERE
 grd1: amount ∈ 1..piggybank
THEN
 act1: piggybank := piggybank − amount
END
END CoffeeClub

The context MembersContext, as before declares a finite set MEMBER, but AnimB requires a finite set with explicit members. For this purpose the context has a section where AnimB values can be defined. In this case MEMBER is declared to be a set containing 3 members, \{m1, m2, m3\}, as shown below.

CONTEXT MembersContext
SETS
 MEMBER
AXIOMS
 axm1: finite(MEMBER)

AnimB VALUES
 MEMBER \{m1, m2, m3\} Define a set of 3 members
END

The machine Membership is as before.
Chapter 4

Refinement

The previous chapter explored a simple development that pursued refinement mainly as extension. In this chapter we will pursue refinement as a development path from an abstract specification through to a concrete model that is very close to implementation.

The development will also illustrate the strategy of commencing the model with the most precise and concise specification of what it is we want to model.

4.1 An example: Square root

Generally, we will not be using examples that are principally numeric computation, but for the current purpose the example of computing the “integer square root” of a natural number will provide a simple example that illustrates refinement quite effectively.

Definition and Model

We start with a definition of the square root we want to compute.

Let \(num \) be the number whose integer square root we want to compute and \(sqrt \) be the square root function. The integer square root of a natural number is the largest integer that is not greater than the real square root. We define \(sqrt \) as follows:

\[
\begin{align*}
num & \in \mathbb{N} \\
sqrt & \in \mathbb{N} \to \mathbb{N} \\
\sqrt(num) \times \sqrt(num) & \leq num \\
um & < (\sqrt(num) + 1) \times (\sqrt(num) + 1)
\end{align*}
\]

We will use a context to define the constant \(num \), whose square root we wish to compute. The value of \(num \) is any natural number.

```plaintext
CONTEXT SquareRoot_ctx
EXTENDS Theories
CONSTANTS
  num
AXIOMS
```
We model \sqrt{n} as follows:

MACHINE SquareRoot

SEES

SquareRoot_ctx

VARIABLES

sqrt

ININVARIANTS

inv1: $\sqrt{n} \in \mathbb{N}$

EVENTS

Initialisation

$\mathbf{\sqcap}$

THEN

act1: $\sqrt{n} \in \mathbb{N}$

END

SquareRoot

$\mathbf{\sqcap}$

WHERE

grd1: $\sqrt{n} \cdot \sqrt{n} > \text{num}$
 check sqrt

grd2: $\text{num} \leq (\sqrt{n} + 1)(\sqrt{n} + 1)$
 is not already computed

THEN

sqrt : $\{ \sqrt{n'} \in \mathbb{N} \}

act1: $\land \sqrt{n'} \cdot \sqrt{n'} \leq \text{num}$

$\land \text{num} < (\sqrt{n'} + 1)(\sqrt{n'} + 1)$

END

END SquareRoot

Notation

math ascii

$:|:|$

"becomes such that": $x :: P$, where x is a variable and P is a predicate, means assign to x a value such that $P(x)$ is \top, where \top is Boolean true. Within P, x represents the value of the variable x before the assignment, and x' represents the value of x after the assignment. Thus, $x :: x' = x + 1$ assigns the value of $x + 1$ to the variable x. Equivalent to $x := x + 1$.
4.1. AN EXAMPLE: SQUARE ROOT

Note: For a first simple exercise the guards to `SquareRoot` could be omitted. They prevent the event running forever.

When we look at the Proof obligations we see:

<table>
<thead>
<tr>
<th>INITIALISATION/inv1/INV:</th>
<th><code>sqrt' ∈ N ⊢ sqrt' ∈ N</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>SquareRoot/inv1/INV:</td>
<td><code>sqrt ∈ N</code>
<code>sqrt' ∈ N</code>
<code>sqrt' * sqrt' ≤ num</code>
<code>num < (sqrt' + 1) * (sqrt' + 1)</code></td>
</tr>
<tr>
<td>SquareRoot/act1/FIS:</td>
<td><code>num ∈ N ⊢ \exists sqrt' · sqrt' ∈ N</code>
<code>sqrt' * sqrt' ≤ num</code>
<code>num < (sqrt' + 1) * (sqrt' + 1)</code></td>
</tr>
</tbody>
</table>

These are all easy to discharge except the feasibility PO for `SquareRoot` act1.

It should be clear that the model correctly specifies `sqrt`, by embedding the definition of `sqrt`.

What this is asking is:

> it is all very well to write a predicate such as this about `sqrt'`, but show that such an animal exists!

The important point is that it is easy to write predicates that do not have a solution. The typical way of discharging such a PO is to give a *witness*, that is a value for the existential variable(s) that *satisfies* the quantified predicate.

It is clear that we cannot do this, so the PO will be left undischarged. Rodin allows the PO to be reviewed, indicating that the PO has been looked at and it is believed to be true.

We will implicitly satisfy the PO by proceeding with a refinement that will demonstrate how a value can be computed for `sqrt`.

It is important to understand that, if it is not possible to discharge a feasibility PO —such as the above for `sqrt`— then it will not be possible to complete a concrete refinement, in which we produce a method of computing `sqrt` and discharge all POs generated through the refinement.

Refinement: How we make progress

A simple way of motivating what to do next was presented by David Gries in *Science of Programming* [10]. In the current specification we have two predicates:

\[
\begin{align*}
\text{sqrt} * \text{sqrt} & \leq \text{num} \\
\text{num} & < (\text{sqrt} + 1) * (\text{sqrt} + 1)
\end{align*}
\]

Each of them is easy to satisfy on their own, but the difficulty is satisfying them both at the same time. This suggests that we should use two variables and then try to bring them together. Thus we will use:

\[
\begin{align*}
\text{low} * \text{low} & \leq \text{num} \\
\text{num} & < \text{high} * \text{high} \\
\text{low} & < \text{high}
\end{align*}
\]
and move low and high closer together until

\[low + 1 = high \]

at which point low will be the desired value of sqrt.

We can now model this idea of splitting the invariant.

MACHINE SquareRootR1

REFINES SquareRoot

SEES SquareRoot_ctx

VARIABLES

\[\text{sqrt}, \text{low}, \text{high} \]

INVIANTS

\[\text{inv1}: \text{low} \in \mathbb{N} \]

\[\text{inv2}: \text{high} \in \mathbb{N} \]

\[\text{inv3}: \text{low} + 1 \leq \text{high} \]

\[\text{inv4}: \text{low} \times \text{low} \leq \text{num} \]

\[\text{inv5}: \text{num} < \text{high} \times \text{high} \]

\[\text{thm1}: \text{low} + 1 \neq \text{high} \Rightarrow \text{low} < (\text{low} + \text{high})/2 \]

\[\text{thm2}: (\text{low} + \text{high})/2 < \text{high} \]

VARIANT

\[\text{high} - \text{low} \]

EVENTS

Initialisation

\[\Rightarrow \]

THEN

\[\text{act1}: \text{sqrt} :\in \mathbb{N} \]

\[\text{act2}: \text{low} :\text{low}^' \in \mathbb{N} \land \text{low} \times \text{low} \leq \text{num} \]

\[\text{act3}: \text{high} :\text{high}^' \in \mathbb{N} \land \text{num} < \text{high} \times \text{high}^' \]

END

SquareRoot

\[\Rightarrow \]

REFINES SquareRoot

WHERE

\[\text{grd1}: \text{low} + 1 = \text{high} \]

\[\text{thm1}: \text{low} \times \text{low} \leq \text{num} \]

\[\text{thm2}: \text{num} < \text{high} \times \text{high} \]

THEN

\[\text{act1}: \text{sqrt} := \text{low} \]

END

Improve

\[\Rightarrow \]

STATUS convergent

ANY

\[l \]

\[h \]

WHERE
4.1. AN EXAMPLE: SQUARE ROOT

\begin{align*}
grd1 & : \quad \text{low} + 1 \neq \text{high} \\
grd2 & : \quad l \in \mathbb{N} \land \text{low} \leq l \land l \cdot l \leq \text{num} \\
grd3 & : \quad h \in \mathbb{N} \land h \leq \text{high} \land \text{num} < h \cdot h \\
grd4 & : \quad l + 1 \leq h \\
grd5 & : \quad h - 1 < \text{high} - \text{low}
\end{align*}

\text{THEN}

\text{act1 : low, high := l, h}

\text{END}

\text{END SquareRootR1}

Parameters

Parameters represent arbitrary, nondeterministic values over which we have no control. Despite that they have significant influence on the conditions under which an event may fire. In the above we have introduced parameters \(l \) and \(h \) to represent improvements in \(\text{low} \) and \(\text{high} \), respectively. The constraints on \(l \) and \(h \) are specified, but there is no guidance given as to how to choose such values. Notice that the specification allows for only one of \(l \) and \(h \) to be an improvement, but one must be an improvement, or the machine will deadlock.

Convergence and Variants

The event \textit{Improve} has been given a status of \textit{convergent}. The reason is that the original single event \textit{SquareRoot} has been refined into an event that will fire only once, when its guard is satisfied, but we have introduced a new \textit{slave} event \textit{Improve} that could, in principle, fire forever. By giving it the status \textit{convergent} we are signalling that the event converges, \textit{i.e.} it will fire some finite number of times. To prove convergence we are required to give a \textit{variant}. A variant is an expression that may be of two possible forms:

1. an expression that yields an integer value, or
2. an expression that yields a finite set

The variant is subject to the following constraints:

\textbf{case 1:} whenever \textit{any} convergent event occurs the value of the variant must yield a natural number and \textit{must strictly decrease} across the event;

\textbf{case 2:} whenever \textit{any} convergent event occurs the cardinality of the variant \textit{must strictly decrease} across the event.

By \textit{decrease across the event} we mean that the value on exit from the event is less than the value on entry to the event.

It is clear that if these constraints on the variant are satisfied then all convergent events must eventually terminate.

The variant produces the following POs for each convergent event:

\textbf{VWD:} possible well-definedness PO;

\textbf{NAT:} proof that a numeric variant always yields a natural number after the event;
VAR: proof that the event reduces the value of a numeric-valued variant expression, or the cardinality of a set-valued variant.

Notice that the variant in the above machine could also have been a set-valued variant: *low .. high*. Failure of the PO generated for the variant may show that the machine is subject to *livelock*. Livelock occurs when “main events”, in this case the *SquareRoot* cannot fire because the slave events can fire indefinitely.

Improving Improve

We will now refine *Improve*. The central idea is to refine either *low* or *high* by choosing a value that is strictly between *low* and *high*; we know we can do that because *low* and *high* are separated by more than 1: *low < high* and *low + 1 ≠ high*. In the first refinement we will propose a new parameter *m* that replaces either *l* or *h*. We will refine *Improve* in two ways: improving either *low* or *high*.

MACHINE *SquareRootR2*
REFINES
 SquareRootR1
SEES
 SquareRoot__ctx
VARIABLES
 sqrt
 low
 high
INVAR

EVENTS
Initialisation: *extended ≡*
THEN
END

SquareRoot: *extended ≡*
REFINES
 SquareRoot
WHERE
THEN
END

Improve1: *≡*
REFINES
 Improve
ANY
 m
WHERE
 grd1: *low + 1 ≠ high*
 grd2: *m ∈ N*
 grd3: *low < m ∧ m < high*
 grd4: *m * m ≤ num m is a better value for low*
WITH
 l: *l = m*
 h: *h = high*
4.1. AN EXAMPLE: SQUARE ROOT

THEN
 act1: low := m
END

Improve2 ≡
REFINES
 Improve
ANY
 m
WHERE
 grd1: low + 1 ≠ high
 grd2: m ∈ ℕ
 grd3: low < m ∧ m < high
 grd4: m * m > num m is a better value for high
WITH
 l: l = low
 h: h = m
THEN
 act1: high := m
END

END SquareRootR2

Witness and the With clause

The issue here is that we have replaced two parameters, l and h, by a single parameter, m, in each of the two refinements of Improve. Parameters l and h have disappeared. To enable the verification that Improve1 and Improve2 do refine Improve we have to give what is known as a witness for l and h. This
will show how the new parameters simulate the old.

Refining SquareRootR2

The previous refinement introduced the value m and defined it declaratively as simply a value —any value— strictly between low and high. We can proceed with many different strategies for m

1. low + 1 and high − 1
2. a value mid way between low and high

We will adopt for 2 this refinement.

MACHINE SquareRootR3
REFINES
 SquareRootR2
SEES
 SquareRoot_ctx
VARIABLES
 sqrt
 low
 high
ININVARIANTS
EVENTS

Initialisation : extended \(\equiv \)

THEN

END

SquareRoot : extended \(\equiv \)

REFINES

SquareRoot

WHERE

THEN

END

Improve1 \(\equiv \)

REFINES

Improve

ANY

m

WHERE

\begin{align*}
\text{grd1: } & low + 1 \neq high \\
\text{grd2: } & m = (low + high)/2 \\
\text{grd3: } & m \times m \leq num
\end{align*}

m is a better value for low

THEN

act1: low := m

END

Improve2 \(\equiv \)

REFINES

Improve

ANY

m

WHERE

\begin{align*}
\text{grd1: } & low + 1 \neq high \\
\text{grd2: } & m = (low + high)/2 \\
\text{grd3: } & m \times m > num
\end{align*}

m is a better value for high

THEN

act1: high := m

END

END SquareRootR3

Refining SquareRootR3

SquareRootR3 is still not completely concrete as it depends on the abstract parameter \(m \). But the value of \(m \) is clearly able to be computed from the values of the variable \(low \) and \(high \) and hence can be replaced by a variable, which we will name \(mid \). Thus, we will introduce a variable \(mid \) with the invariant

\[mid \times mid > num \]
At the same time we will remove the nondeterministic initialisation of low and high, making it easier to initialise mid, and also producing a concrete machine, or algorithm. It is clear that initialisation of low to 0 and high to num + 1 will satisfy the invariant, but it is also clear that neither will be very good approximations to the square root for very large values of num. However, finding a better approximation will require computation and as the final algorithm is logarithmic it can be argued that 0 and num + 1 are good enough.

\begin{verbatim}
MACHINE SquareRootR4
REFINES
 SquareRootR3
SEES
 SquareRoot_ctx
VARIABLES
 sqrt
 low
 high
 mid
INVARIANTS
 inv1: mid = (low + high)/2
EVENTS
 Initialisation ≜
 THEN
 act1: sqrt := 0
 act2: low := 0
 act3: high := num + 1
 act4: mid := (num + 1)/2
 END

SquareRoot : extended ≜
REFINES
 SquareRoot
WHERE

THEN

END

Improve1 ≜
REFINES
 Improve
ANY

WHERE
 grd1: low + 1 ≠ high
 grd2: mid * mid ≤ num mid is a better value for low
WITH
 m: m = mid
THEN
 act1: low := mid
 act2: mid := (mid + high)/2
END

Improve2 ≜
REFINES
 Improve
\end{verbatim}
\textbf{An alternative refinement to SquareRootR4}

It is possible to refine directly from SquareRootR2 to SquareRootR4 bypassing the step in which the parameter m is equated to \((\text{low} + \text{high})/2\) and going straight to the introduction of the variable \(\text{mid}\). That is not to say that either approach is better. The sequence we have used does highlight the fact that there are many different strategies for choosing the value of \(m\).

\textbf{Exercise}

Produce the alternative refinement step from SquareRootR3 to SquareRootR4. Name it SquareRootR4B.

\section{Modelling a parametric argument}

In the model above we modeled the argument to the \text{SquareRoot} event as a constant \(\text{num}\) in the context to the \text{SquareRoot} machine. That is perfectly satisfactory as far as verifying the square root process, however it is not parametric.

The following is a repeat of the modelling of \text{SquareRoot} using a parameter.

\textbf{MACHINE SquareRoot}

\textbf{SEES}

\textbf{THEORIES}

\textbf{VARIABLES}

\textbf{sqrt}

\textbf{INVARIANTS}

\textbf{inv1: sqrt \in \mathbb{N}}

\textbf{EVENTS}

\textbf{Initialisation} \equiv

\textbf{THEN}

\textbf{act1: sqrt \in \mathbb{N}}

\textbf{END}

\textbf{SquareRoot} \equiv

\textbf{ANY}

\textbf{num}

\textbf{WHERE}
4.2. MODELLING A PARAMETRIC ARGUMENT

$$grd1: \ num \in \mathbb{N}$$

THEN

$$\sqrt{\ } : \ (\sqrt{\ }' \in \mathbb{N} \\land \sqrt{\ }' \ast \sqrt{\ }' \leq \num \land \num < (\sqrt{\ }' + 1) \ast (\sqrt{\ }' + 1))$$

END

END SquareRoot

The above is very similar to the earlier starting point for SquareRoot except that \(num \) is now a parameter.

When SquareRoot is refined it is clear that in order to be able to reference the value of the \(num \) parameter from different Events the value \(num \) will have to be stored in a variable.

MACHINE SquareRootR1
REFINES
SquareRoot

SEES
Theories

VARIABLES
\(sqrt \)
\(low \)
\(high \)
\(numv \)
\(active \)

INvariants

inv1: \(numv \in \mathbb{N} \)
inv2: \(low \in \mathbb{N} \)
inv3: \(high \in \mathbb{N} \)
inv4: \(low + 1 \leq high \)
inv5: \(low \ast low \leq numv \)
inv6: \(numv < high \ast high \)
inv7: \(active \in BOOL \)
 \(active = FALSE \Rightarrow \)
inv8: \(\sqrt{\ } \ast \sqrt{\ } \leq numv \land \)
 \((\sqrt{\ } + 1) \ast (\sqrt{\ } + 1) > numv \)

VARIANT
\(high - low \)

EVENTS

Initialisation \(\cong \)

THEN

act1: \(numv := 0 \)
act2: \(low := 0 \)
act3: \(high := 1 \)
act4: \(sqrt := 0 \)
act5: \(active := FALSE \)

END

SquareRoot \(\cong \)
REFINES
Chapter 4. Refinement

SquareRoot

WHERE
- grd1: \(low + 1 = high \)
- grd2: \(active = TRUE \)

WITH
- num: \(num = numv \)

THEN
- act1: \(sqrt := low \)
- act2: \(active := FALSE \)

END

Improve \(\equiv \)

STATUS convergent

ANY
- l
- h

WHERE
- grd1: \(low + 1 \neq high \)
- grd2: \(l \in \mathbb{N} \land low \leq l \land l \cdot l \leq num \)
- grd3: \(h \in \mathbb{N} \land h \leq high \land num < h \cdot h \)
- grd4: \(l + 1 \leq h \)
- grd5: \(h - 1 < high - low \)
- grd6: \(active = TRUE \)

THEN
- act1: \(low, high := l, h \)

END

activate \(\equiv \)

ANY
- num

WHERE
- grd1: \(num \in \mathbb{N} \)
- grd2: \(active = FALSE \)

THEN
- act1: \(numv := num \)
- act2: \(low ;\mid low' \in \mathbb{N} \land low' \cdot low' \leq num \)
- act3: \(high ;\mid high' \in \mathbb{N} \land num < high' \cdot high' \)
- act4: \(active := TRUE \)

END

END SquareRootR1

Notation

<table>
<thead>
<tr>
<th>Math</th>
<th>ASCII</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOL</td>
<td>BOOL</td>
</tr>
<tr>
<td>bool</td>
<td>{\top,\bot}</td>
</tr>
</tbody>
</table>

Note: the type bool is not denotable in an Event-B model.

The BOOL variable, *active* is used in the above refinement to distinguish between the states when the events are actively searching for a square root (*active* = TRUE) and the quiescent state (*active* = FALSE).
FALSE) when a square root has been found.

Remainder of development

The remainder of the development follows the development above for the parameterless SquareRoot event, leading to the final refinement.

MACHINE SquareRootR4
REFINES SquareRootR3
SEES
 Theories
VARIABLES
 sqrt
 numb
 low
 high
 active
 mid
INVARIANTS
 inv1: mid = (low + high)/2
EVENTS
 Initialisation ≜
 THEN
 act1: numv := 0
 act2: low := 0
 act3: high := num + 1
 act4: sqrt := 0
 act5: active := FALSE
 act6: mid := 0
 END

 SquareRoot ≜
 REFINES SquareRoot
 WHERE
 grd1: low + 1 = high
 grd2: active = TRUE
 THEN
 act1: sqrt := low
 act2: active := FALSE
 END

 Activate ≜
 REFINES activate
 ANY
 num
 WHERE
 grd1: num ∈ \mathbb{N}
 grd2: active = FALSE
 THEN
act1: \(\text{numv} := \text{num} \)
act2: \(\text{low} := 0 \)
act3: \(\text{high} := \text{num} + 1 \)
act4: \(\text{mid} := (\text{num} + 1)/2 \)
act5: \(\text{active} := \text{TRUE} \)

END

\textbf{Improve1} \equiv
\textbf{REFINES}
\textbf{Improve1}
\textbf{WHERE}
\begin{align*}
grd1 & : \text{low} + 1 \neq \text{high} \\
grd2 & : \text{mid} \times \text{mid} \leq \text{numv} \\
\end{align*}
\textbf{WITH}
\begin{align*}
m & : m = \text{mid} \\
\end{align*}
\textbf{THEN}
\begin{align*}
\text{act1} & : \text{low} := \text{mid} \\
\text{act2} & : \text{mid} := (\text{mid} + \text{high})/2 \\
\end{align*}

END

\textbf{Improve2} \equiv
\textbf{REFINES}
\textbf{Improve2}
\textbf{WHERE}
\begin{align*}
grd1 & : \text{low} + 1 \neq \text{high} \\
grd2 & : \text{numv} < \text{mid} \times \text{mid} \\
grd3 & : \text{active} = \text{TRUE} \\
\end{align*}
\textbf{WITH}
\begin{align*}
m & : m = \text{mid} \\
\end{align*}
\textbf{THEN}
\begin{align*}
\text{act1} & : \text{high} := \text{mid} \\
\text{act2} & : \text{mid} := (\text{low} + \text{mid})/2 \\
\end{align*}

END

\textbf{SquareRootR4}

\textbf{Converting to programming code}

The final refinement is easily seen to be translated to the following code.
\begin{verbatim}
low := 0;
high := num + 1;
while low + 1 \neq high {
 mid := (low + high)/2
 if mid \times mid \leq num{
 low := mid
 }
}
\end{verbatim}
else high := mid
}
sqrt := low
Chapter 5

Invariants: Specifying Safety

Use of invariants to formulate “safety” and as a means of ensuring “safety”
Use of theorems to provide a check on properties that are expected to be satisfied
Increasing familiarity with the set theory used by Event-B
Data refinement: this chapter contains the first example of refinement that significantly refines the data (variables) of the model

There is a danger that the invariant is seen merely as a mechanism for typing variables, somewhat similar to the type specifications in typed programming languages. The square root example should have shown that the invariant is more than that. The invariant can be used to specify the semantic relationship between variables, and in the square root example that relationship was critical to being able to demonstrate that the value finally produced in the variable \(\text{sqrt} \) — when all the events complete — did indeed produce the required value of the square root. If the invariants were reduced to recording only type information, the model would still behave the same as the preceding model, but the PO would not provide confirmation.

This should highlight the requirement that developers of Event-B models should make maximum use of invariance and not behave in the way they might if writing a program.

![Invariants should be as strong as possible, but no stronger.](image)

Invariants are often described metaphorically as safety constraints and in the next example the invariant is literally an expression of safety.

Also, theorems provide very useful sanity checks to confirm those properties that are “obviously” true.

5.1 Simple Traffic Lights

We wish to explore the use of invariants to ensure safety for a traffic light controlled intersection. The discussion will move from:

- a simple 2-way intersection consisting of NorthSouth and EastWest directions, and then moving to
- a generalised multiway intersection

The simple two-way intersection consists of two directions: NorthSouth and EastWest. Each direction has two sets of identical traffic lights each displaying Red, Green and Amber lights. There are only two directions: for example there is no turn-right or turn-left direction.

CONTEXT SimpleTwoWay0

SETS

LIGHTS DIRECTION

CONSTANTS

Red
Green
Amber
NorthSouth
EastWest

AXIOMS

axm1: \(\text{partition}(\text{LIGHTS}, \{\text{Red}\}, \{\text{Green}\}, \{\text{Amber}\}) \)

axm2: \(\text{partition}(\text{DIRECTION}, \{\text{NorthSouth}\}, \{\text{EastWest}\}) \)

END

Notation

\begin{align*}
\text{partition} & \quad \text{partition} \\
\cap & \quad \cap \\
\text{partition}(S,\ldots s_n) & \text{means } S = s_1 \cup \ldots \cup s_n, \text{ and the sets } s_1, \ldots, s_n \\
& \text{are pairwise disjoint: } s_i \cap s_j = \emptyset \\
\cap & \quad \cap \\
\text{Set intersection: } S \cap T & \text{is the elements of elements that are in both } S \\
& \text{and } T
\end{align*}

\(\text{partition}(\text{LIGHTS}, \{\text{Red}\}, \{\text{Green}\}, \{\text{Amber}\}) \) is equivalent to

\[
\text{LIGHTS} = \{\text{Red, Green, Amber}\} \\
\text{Red} \neq \text{Green} \\
\text{Green} \neq \text{Amber} \\
\text{Amber} \neq \text{Green}
\]

Sets LIGHTS and DIRECTION are finite enumerated sets.

- LIGHTS has 3 distinct colours, and
- DIRECTION has 2 distinct directions.

Now consider a machine SimpleChangeLights of which only a skeleton will be shown.

MACHINE SimpleChangeLights

SEES

SimpleTwoWay1

VARIABLES

lights

END SimpleChangeLights

At the moment lights is simply declared as a total function from DIRECTION to LIGHTS, and we want to explore what else is necessary to ensure a safe set of traffic lights.

We want the following to be true:

- whenever the intersection is unsafe the invariant must be false;
- whenever the invariant is true the intersection must be safe.
5.1. SIMPLE TRAFFIC LIGHTS

That is:

\[\neg (\text{safe}) \Rightarrow \neg (\text{invariant}) \quad (5.1) \]

and

\[\text{invariant} \Rightarrow \text{safe} \quad (5.2) \]

Note that instead of \(x = \top \), we will simply write \(x \), and wherever we might write \(x = \bot \), we will simply write \(\neg x \), for example safe and invariant in the above.

<table>
<thead>
<tr>
<th>Notation</th>
<th>math</th>
<th>ascii</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\neg)</td>
<td>not</td>
<td>negation: (\neg P) negates the predicate (P)</td>
</tr>
</tbody>
</table>

5.2 will be recognised as the contrapositive of 5.1, that is

\[P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P \]

so we have only one requirement for safety, not two.

The second invariant — the safety condition — could be

\[\text{lights}(\text{NorthSouth}) \in \{\text{Green, Amber}\} \Rightarrow \text{lights}(\text{EastWest}) = \text{Red} \]

or

\[\text{lights}(\text{EastWest}) \in \{\text{Green, Amber}\} \Rightarrow \text{lights}(\text{NorthSouth}) = \text{Red} \]

<table>
<thead>
<tr>
<th>lights(NorthSouth)</th>
<th>Red</th>
<th>Amber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>safe</td>
<td>safe</td>
</tr>
<tr>
<td>Green</td>
<td>safe</td>
<td>unsafe</td>
</tr>
<tr>
<td>Amber</td>
<td>unsafe</td>
<td>unsafe</td>
</tr>
</tbody>
</table>

There are other invariants that adequately express safety for a two-way intersection:

\[\text{lights}(\text{NorthSouth}) = \text{Red} \lor \text{lights}(\text{EastWest}) = \text{Red} \]

\(\text{Red} \in \text{ran}(\text{lights}) \)

But these conditions do not generalise to intersections with more than two ways. Indeed the expression of the invariant that best generalises is the formulation given in the next section.
Simplifying and Generalising

Instead of referencing the directions and their conflicting directions by name we will define a constant function $OTHERDIR$ that maps $NorthSouth$ to $EastWest$ and vice-versa. This prepares the context to deal with multiple directions, something we will do in the next section. The definition of $OTHERDIR$ is given in a new context, $SimpleTwoWay1$, that is an extension of $SimpleTwoWay0$.

CONTEXT SimpleTwoWay1
EXTENDS SimpleTwoWay0
CONSTANTS
OTHERDIR

AXIOMS

- **axm3**: $OTHERDIR \in DIRECTION \rightarrow DIRECTION$
- **axm4**: $OTHERDIR(NorthSouth) = EastWest$
- **axm5**: $OTHERDIR(EastWest) = NorthSouth$

thm1: $\forall dir \cdot dir \in DIRECTION \Rightarrow OTHERDIR(OTHERDIR(dir)) = dir$

thm2: $OTHERDIR \circ OTHERDIR \subseteq id$

The context $SimpleTwoWay1$ extends $SimpleTwoWay0$ with a relation, $OTHERDIR$, (actually a total function) that maps each of the directions, respectively, to the “other” direction. The behaviour of $OTHERDIR$ is defined by axioms **axm3**, **axm4**, **axm5**.

The same behaviour could be defined using universal quantification as shown in **thm1**, however given the axiomatic definition this behaviour should now be provable, hence the use of a theorem.

Similarly, it should be clear that if $OTHERDIR$ is sequentially composed with itself the result should be the identity relation on the set $DIRECTION$. Again, this is tested by proposing a theorem.

The Simple TwoWay machine

The machine has a three events that, respectively, change the light in a particular direction to Red, $Green$ or $Amber$. The machine must ensure:

- safety;
- correct sequencing: Red, $Green$, $Amber$, Red, ...
5.2. A MULTIWAY INTERSECTION

The multiway intersection consists of:

DIRECTION: a finite set of directions that are not enumerated;

LIGHTS: the standard set of Red, Green and Amber lights;

CONFLICT: a relation identifying directions that conflict with one another.
CONTEXT TrafficLights2_ctx
SETS
 LIGHTS
 DIRECTION
CONSTANTS
 Red
 Green
 Amber
 CONFLICT
AXIOMS
 axm1: partition(LIGHTS, {Red}, {Green}, {Amber})
 axm2: finite(DIRECTION)
 axm3: CONFLICT ∈ DIRECTION ↔ DIRECTION
 axm4: CONFLICT ∩ id = ∅
 axm5: CONFLICT⁻¹ = CONFLICT
 thm1: ∀d · d ∈ DIRECTION ⇒ d /∈ CONFLICT[d]
 thm2: ∀d1, d2 · d1 /∈ CONFLICT[d2] ⇒ d2 /∈ CONFLICT[d1]
END

Notation
<table>
<thead>
<tr>
<th>math</th>
<th>ascii</th>
</tr>
</thead>
<tbody>
<tr>
<td>\notin</td>
<td>/: not an element of; non-membership</td>
</tr>
<tr>
<td>$r[s]$</td>
<td>$r{s}$ Relational image: $r[s]$ is the set of values related to all elements of s under the relation r</td>
</tr>
</tbody>
</table>

Notes on CONFLICT

axm3: CONFLICT is a relation that relates all pairs of directions for which a safety invariant applies:

$$\forall d1, d2 · d1 \mapsto d2 \in CONFLICT$$

$$LIGHTS[d1] ∈ \{Green, Amber\} \Rightarrow LIGHTS(d2) = Red;$$

axm4: (irreflexive) no direction can conflict with itself;

axm5: (symmetry) conflicts are symmetric: $d1$ conflicts with $d2$ ⇒ $d2$ conflicts with $d1$;

thm1: no direction d can be in the set of directions that conflict with d. This follows from axm4, since if it weren’t true then the direction would conflict with itself.

thm2: the contrapositive of symmetry: $d2$ does not conflict with $d1$ ⇒ $d1$ does not conflict with $d2$.

The Initial Traffic Light model

Our initial model may look strange, as we are going to consider an initial state that has only Red and Green lights, and only events for changing Red to Green and vice-versa.

This models the sense in which those events are the primary events and changing lights from Green to Amber is a further expression of a safety constraint. An intersectin in which lights were suddenly changed between Red and Green would be far from safe, despite our safety invariant.

Also in the interest of safety we will introduce time intervals between light changes.
5.2. A MULTIWAY INTERSECTION

MACHINE ChangeLights2
SEES
TrafficLights2_ctx

VARIABLES
lights

INVARIANTS
inv1: \(\text{lights} \in \text{DIRECTION} \to \{\text{Red, Green}\} \)
inv2: \(\forall d \in \text{DIRECTION} \land \text{lights}(d) = \text{Green} \)
\(\Rightarrow \text{lights}[\text{CONFLICT}[\{d\}]] \subseteq \{\text{Red}\} \)
inv3: finite(lights)

EVENTS

Initiation \(\equiv \)

THEN
\(\text{lights} : \text{\mid lights} \in \text{DIRECTION} \to \{\text{Red, Green}\} \)
\(\land (\forall d \in \text{DIRECTION} \land \text{lights}(d) = \text{Green} \)
\(\Rightarrow \text{lights}[\text{CONFLICT}[\{d\}]] \subseteq \{\text{Red}\}) \)

End

RedToGreen \(\equiv \)

ANY
adir

WHERE
grd1: \(\text{lights}(adir) = \text{Red} \)

THEN
act1: \(\text{lights} := \text{lights} \uplus (\text{CONFLICT}[\{adir\}] \times \{\text{Red}\}) \leftarrow \{adir \mapsto \text{Green}\} \)

End

ToRed \(\equiv \)

ANY
adir

WHERE
grd1: \(\text{lights}(adir) = \text{Green} \)

THEN
act1: \(\text{lights}(adir) := \text{Red} \)

End

End ChangeLights2

Notation
math ascii
\(\uplus \leftrightarrow \) \(\uplus \leftrightarrow \) Override: \(r \uplus s \) yields the relation \(r \) overridden by the relation \(s \). As far as possible \(r \uplus s \) behaves like \(s \): \(r \uplus s = \text{dom}(s) \uplus r \cup s \)

While the above machine preserves the safety invariant the intersection is not safe as lights are changed instantly from \text{Green} to \text{Red} and from \text{Red} to \text{Green}.

The data refinement \text{ChangeLight2R} will address that problem by introducing \text{Amber} between \text{Green} and \text{Red}, and also introducing a delay between all transitions. What we are doing is \text{opening up} the state to reveal more detail.

Thus, \text{lights} is refined to \text{xlights}, (extra lights), that introduces \text{Amber}.
MACHINE ChangeLight2R
REFINES ChangeLight2
SEES TrafficLights2_ctx

VARIABLES
xlights
delay
dir
togreen
tored

INVARIANTS

inv1: \(xlights \in \text{DIRECTION} \rightarrow \text{LIGHTS} \)

inv2: \(\forall d \in \text{DIRECTION} \wedge xlights[d] \subseteq \{\text{Green}, \text{Amber}\} \Rightarrow xlights[\text{CONFLICT}[d]] \subseteq \{\text{Red}\} \)

inv3: dir \in \text{DIRECTION}

inv4: togreen \in \text{BOOL}

inv5: tored \in \text{BOOL}

inv6: togreen = \text{TRUE} \Rightarrow tored = \text{FALSE}

togreen = \text{TRUE}

inv7: \Rightarrow \text{CONFLICT}[\text{dir}] \triangleq \text{lights} \Rightarrow \text{CONFLICT}[\text{dir}] \triangleq xlights

inv8: delay \subseteq \text{DIRECTION}

inv9: tored = \text{TRUE} \Rightarrow (xlights \triangleleft \{\text{dir} \mapsto \text{Red}\} = \text{lights} \triangleleft \{\text{dir} \mapsto \text{Red}\})

tored = \text{TRUE}

inv10: togreen = \text{FALSE} \wedge tored = \text{FALSE} \Rightarrow \text{lights} = xlights

thm1: finite(xlights)

\forall b, a \in \text{LIGHTS} \wedge a \neq b \Rightarrow \text{card}(xlights) = b

thm2: \Rightarrow \text{card}((xlights \triangleleft \{d \mapsto a\}) \triangleright \{b\}) = \text{card}(xlights \triangleright \{b\}) - 1

\forall d, b, a \in \text{DIRECTION} \wedge b \in \text{LIGHTS} \wedge a \in \text{LIGHTS} \wedge a \neq b \wedge xlights(d) = b

thm3: \Rightarrow \text{card}((xlights \triangleleft \{d \mapsto a\}) \triangleright \{a\}) = \text{card}(xlights \triangleright \{a\}) + 1

\forall d, b, a, c \in \text{DIRECTION} \wedge b \in \text{LIGHTS} \wedge a \in \text{LIGHTS} \wedge c \in \text{LIGHTS} \wedge xlights(d) = b \wedge c \neq a \wedge c \neq b

thm4: \Rightarrow \text{card}((xlights \triangleleft \{d \mapsto a\}) \triangleright \{c\}) = \text{card}(xlights \triangleright \{c\})

\forall b, a \in \text{LIGHTS} \wedge a \neq b \Rightarrow \text{card}(xlights) \neq \text{card}(xlights) - 1

\text{changing light in direction}

\text{d from b (= before) to a (= after) decreases number of colour b lights by 1}

\text{changing light in direction}

\text{d from b (= before) to a (= after) increases number of colour a lights by 1}

\text{changing light in direction}

\text{d from b (= before) to a (= after) does not change number of colour c, c / = a, c / = b}
Notation

\[D \triangleleft s \triangleleft r \] Domain subtraction: \(s \triangleleft r \) is the subset of \(r \) in which \(s \) has been subtracted from the domain of \(r \)

\[D \triangleright s \] Range restriction: \(r \triangleright s \) is the subset of \(r \) in which the range is restricted to the set \(s \)

EVENTS

Initialisation \(\equiv \)

WITH

\[\text{lights} ' : \quad \text{lights}' = \text{xlights}' \]

THEN

\[\text{xlights} : | \]

\[\text{xlights}' \in \text{DIRECTION} \rightarrow \{ \text{Red}, \text{Green} \} \]

act1: \(\land (\forall d \in \text{DIRECTION} \land \text{xlights}'(d) = \text{Green} \Rightarrow \text{xlights}'[\text{CONFLICT}[\{d\}]] \subseteq \{ \text{Red} \}) \)

act2: \(\text{delay} := \emptyset \)

act3: \(\text{togreen}, \text{tored} := \text{FALSE}, \text{FALSE} \)

act4: \(\text{rdir} \in \text{DIRECTION} \)

END

RedToGreen \(\equiv \)

REFINES

RedToGreen

WHERE

grd1: \(\text{togreen} = \text{TRUE} \)

grd2: \(\text{xlights}(\text{rdir}) = \text{Red} \)

grd3: \(\text{xlights}([\text{CONFLICT}[\{\text{rdir}\}]] \subseteq \{ \text{Red} \}) \)

grd4: \(\text{rdir} \notin \text{delay} \)

WITH

adir: \(\text{adir} = \text{rdir} \)

THEN

act1: \(\text{xlights}(\text{rdir}) := \text{Green} \)

act2: \(\text{togreen} := \text{FALSE} \)

END

RedToGreenInit \(\equiv \)

ANY

adir

WHERE

grd1: \(\text{togreen} = \text{FALSE} \)

grd2: \(\text{tored} = \text{FALSE} \)

grd3: \(\text{xlights}(\text{adir}) = \text{Red} \)

THEN

act1: \(\text{rdir} := \text{adir} \)

act2: \(\text{togreen} := \text{TRUE} \)

END

GreenToAmber \(\equiv \)
STATUS Convergent
ANY
 dir
WHERE
 grd1: togreen = TRUE
 grd2: dir ∈ CONFLICT[\{rdir\}]
 grd3: xlights(dir) = Green
 grd4: dir /∈ delay
THEN
 act1: xlights(dir) := Amber
 act2: delay := delay ∪ \{dir\}
END

AmberToRed =
STATUS ordinary convergent ANY
 dir
WHERE
 grd1: togreen = TRUE
 grd2: dir ∈ CONFLICT[\{rdir\}]
 grd3: xlights(dir) = Amber
 grd4: dir /∈ delay
THEN
 act1: xlights(dir) := Red
 act2: delay := delay ∪ \{rdir\}
END

Delay =
STATUS ordinary convergent ANY
 dir
WHERE
 grd1: dir ∈ delay
THEN
 act1: delay := delay \{dir\}
END

ToRed =
REFINES
ToRed
WHERE
 grd1: tored = TRUE
 grd2: xlights(rdir) = Amber
 grd3: rdir /∈ delay
WITH
 adir : adir = rdir
THEN
 act1: xlights(rdir) := Red
 act2: tored := FALSE
END
ToRedInit ≜
ANY
 adir
WHERE
 grd1: $\text{xlights}(adir) = \text{Green}$
 grd2: $\text{tored} = \text{FALSE}$
 grd3: $\text{togreen} = \text{FALSE}$
THEN
 act1: $\text{rdir} := \text{adir}$
 act2: $\text{tored} := \text{TRUE}$
END

ToAmber ≜
WHERE
 grd1: $\text{tored} = \text{TRUE}$
 grd2: $\text{xlights}(\text{rdir}) = \text{Green}$
 grd3: $\text{rdir} \notin \text{delay}$
THEN
 act1: $\text{xlights}(\text{rdir}) := \text{Amber}$
 act2: $\text{delay} := \text{delay} \cup \{\text{rdir}\}$
END

VARIANT
$4 \ast \text{card(xlights} \triangleright \{\text{Green}\}) + 2 \ast \text{card(xlights} \triangleright \{\text{Amber}\}) + \text{card(delay)}$

END ChangeLight2R
CHAPTER 5. INVARIANTS: SPECIFYING SAFETY
Chapter 6

Event-B Semantics

This chapter presents the semantics of Event-B.

The various Proof Obligations (PO) that result from those semantics.

An understanding of “what those POs mean”.

The roles of POs in verifying a refinement.

The classification of POs, which identify what a particular PO is “all about”.

6.1 Semantics in Event B

- Each construct in B is given a formal semantics.
- Additionally, machines must satisfy a set of constraints.

These rules provide for

- the verification of the consistency of a machine;
- the verification that the behaviour of a refinement machine is consistent with the behaviour of the machine it refines.

Note that it is not possible to prove that the behavior of the initial abstract machine is correct, that is, conforms with the written requirements.

State Change

There are three principle constructions —that Event B calls substitutions— for changing the state of a machine:

\[x := e \] becomes equal to the value of \(e \)

This rule may be used recursively to assign to any number of variables.

\[x :| P \] becomes such that it satisfies the before-after predicate \(P \)

\[x \in s \] becomes in the set \(s \)
All of the above, except apparently \(\in \), can be extended to multiple assignment: \(x, y := e_1, e_2 \) and \(x, y :| P \), and recursively to many variables. The variables must be distinct.

Note: all assignments can be written in the form \(x, y :| P \).

Before-After Predicates

Before-after predicates contain primed and unprimed variables, for example

\[x' = x + 1 \]

where the primed variables represent the *after* value of a variable and the unprimed variables the *before* value.

Thus,

\[x :| x' = x + 1 \]

and

\[x := x + 1 \]

are equivalent.

Similarly we can write

\[x, y :| x' = x + 1 \land y' = y + 1 \]

or

\[x, y := x + 1, y + 1. \]

Substitution

We will frequently need to compute, for example in computing POs, the weakest predicate on the state *before* a state given a required predicate on the *after* state.

We can do this by *substituting* into the after state.

We will write

\[[x, y := e_1, e_2]R \]

to denote the *concurrent* substitution of \(e_1 \) and \(e_2 \) for \(x \) and \(y \) in \(R \), respectively.

For example,

\[
[x, y := y - 1, x + 1]x - y < x + y
= (y - 1) - (x + 1) < (y - 1) + (x + 1)
\text{ or } y - x - 2 < y + x
\]

This gives the weakest constraint on the *before* state such that \(x, y := y - 1, x + 1 \) will give an *after* state satisfying \(x - y < x + y \).
Other Forms of Substitution

For each of the 3 change of state substitutions, substitution into a predicate takes the following form:

\[v : \subseteq S \quad \forall v' \cdot v' \subseteq S \Rightarrow [v := v']R \]

where:

1. \(v \) in general is a list of variables, and \(E \) a list of expressions;
2. \(P \) is a predicate containing both \(v \) and \(v' \), where \(v' \); represents the value of \(v \) after the action.

Contexts

<table>
<thead>
<tr>
<th>Sets</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constants</td>
<td>(C)</td>
</tr>
<tr>
<td>Axioms</td>
<td>(A)</td>
</tr>
<tr>
<td>Theorems</td>
<td>(T_c)</td>
</tr>
</tbody>
</table>

Contexts are used to define abstract carrier sets \((S)\) and constants \((C)\).

Notice that \(S \) and \(C \) are essentially extensions of the “builtin” sets such as \(\mathbb{N}, \mathbb{N}_1, \mathbb{Z} \) etc and constants from those sets, but we will elide any explicit extension.

Context Machines: Semantics & Proof Obligations

The semantics of the sets and constants are specified in the axioms. The essential proof obligations is one of feasibility: show that sets and constants exist that will satisfy the axioms. That is:

\[(\exists S, C \cdot A) \]

where sub-axioms \(a_1, a_2, \ldots, a_n \) are effectively conjuncted into a single \(A \). The POs can be recursively split into separate POs based on

\[(\exists S, C \cdot a_1 \land a_2 \land \ldots \land a_n) \equiv (\exists S, C \cdot a_1 \Rightarrow (\exists S, C \cdot a_1 \Rightarrow a_2 \land \ldots \land a_n)) \]

This may require the sub-axioms to be ordered

Of course, components of \(S, C \) that are not referenced in \(a_i \) can be eliminated from \(\exists S, C \cdot a_i \).

Theorems

Theorems describe properties that follow from the axioms, so the general PO for the theorems is

\[(\forall S, C.A \Rightarrow T_c) \]
The theorems will, in general, be broken in sub-theorems \(t_1, t_2, \ldots, t_n \), and since universal quantification distributes through conjunction this breaks into multiple POs:

\[
(\forall S, C.A \Rightarrow t_1), \ldots, (\forall S, C.A \Rightarrow t_n)
\]

Thus, separate proof obligations can be generated for each theorem, however since the sub-theorems are usually distributed through the axioms (or invariants or guards depending on the context of the theorem), theorems must be placed after any axioms on which it depends.

Machines

The form of a machine is:

Context	\(S, C \)
Variables	\(V \)
Invariant	\(I \)
Theorems	\(T_v \)
Variant	\(Var \)
Events	\(E \)

Machine POs: Invariant and Theorems

The **invariant** as for the axioms for context machines, the invariant may raise feasibility proof obligations:

\[
(\exists S, C \cdot A) \Rightarrow (\exists V \cdot I)
\]

The **theorems** must follow from the set/constant axioms and the invariant:

\[
\forall S, C, V \cdot A \land I \Rightarrow T_v
\]

Note: where we have \(A \) we could also have \(A \land T_c \), but since \(A \Rightarrow C \) this does not gain any extra strengthening.

Initialisation

Initialisation, which is a special part of the events, must establish a state in which the variables satisfy the invariant.

Let us represent the initialisation by a multiple substitution

\[
V := E(S, C)
\]

where \(E(S, C) \) emphasises that the initialising expressions can only reference sets and constants: \(E \) must not reference any variables, since all variables at this point are undefined.
Then the proof obligation for initialisation is

$$\forall S, C \cdot A \Rightarrow [V := E(S, C)] I$$

Events

Events have the following form

\[
\begin{array}{c}
\textbf{ANY} \\
\text{WHERE} \ G \\
\text{THEN} \quad \text{Action}
\end{array}
\]

Event: Proof Obligations

There may be feasibility POs: that there exist parameters P that will satisfy the guards G

$$\forall S, C \cdot A \land \exists V, x \cdot I \land G$$

Event: Maintaining Invariant

The event must maintain the invariant of the machine: essentially the invariant will be true before the event is scheduled and must remain true when the event terminates.

$$\forall S, C, V, x \cdot A \land I \land G \Rightarrow [\text{Action}] I$$

Machine Refinements

The form of a refinement machine is

\[
\begin{array}{c}
\text{Context} \\
\text{Variables} \\
\text{Invariant} \\
\text{Theorems} \\
\text{Events} \\
\text{Variant}
\end{array}
\]

S_r, C_r

V_r

I_r

T^+_v

$E_r \ \text{refines} \ E$

E

Var

where E_r represents a refined event and E represents new normal events.
Variables and Invariant

The variable V_r are in general a superset of the variables in the machine being refined. The invariant is the invariant of the refined machine plus invariants for the new variables. In addition the invariant contains the refinement relation relating the state of the refined machine to the variables of the refining machine. This gives a simulation relation.

The proof obligations for the variables, invariant and theorems are similar to those for the machine given above. We will concentrate on the new proof obligations that arise from the refined events.

Proof Obligations

$$\forall V_r. V \cdot I_r \Rightarrow I$$

the new invariant must not allow behaviour that was not part of the refined machine’s behaviour, excepting where the state of the refining machine is “orthogonal” to the refined machine.

Refined Events

Refined Events have the following form

```
ANY $x_r$
WHERE $G_r$
WITH $w : W$
THEN $Action_r$
```

Proof Obligations for Refined Events

guard refinement

$$\forall S, C, S_r, C_r, V, V_r, x, x_r \cdot A \land A_r \land I \land I_r \Rightarrow (G_r \Rightarrow G)$$

witness

$$\forall S, C, S_r, C_r, V, V_r, x, x_r \cdot A \land A_r \land I \land I_r \Rightarrow (\exists w \cdot W)$$

Simulation

$$\forall S, C, S_r, C_r, V, V_r, x, x_r \cdot A \land A_r \land I \land I_r \land W \land [Action_r]I_r \Rightarrow [Action]I$$

where A_r denotes the refinement axioms.

The Variant and Convergent Events

The variant (Var) is an expression that denotes either a finite set or a natural number.

The purpose of the variant is to show that all convergent events must terminate. This is achieved by showing that the size of the set, or the natural number value is strictly decreasing.

Natural number variant

$$\forall S, C, S_r, C_r, V, V_r, x, x_r \cdot A \land I \land I_r \land W \Rightarrow Var \in \mathbb{N}$$

$$\forall S, C, S_r, C_r, V, V_r, x, x_r \cdot A \land I \land I_r \land W \Rightarrow [Action_r]Var < Var$$
6.2 One Point Rule

Consider $\forall x \cdot x \in X \land x = e \Rightarrow P(x)$.

For any x in S, $x = e$ is either true or false. If it is false then the universal quantification is trivially true; if it is true then the quantification reduces to $P(e)$. So

$$(\forall x \cdot x \in X \land x = e \Rightarrow P(x)) = P(e)$$

By a similar argument,

$$(\exists x \cdot x \in X \land x = e \land P(x)) = P(e)$$

Strictly, each should be conjuncted with $\exists x \cdot x \in X \land x = e$.
Chapter 7

Data Refinement: A Queue Model

This model of a simple queue explores data-refinement to a greater depth than in previous models.

The model explores refinement to concrete machines that are closely related to class models in object-oriented design, and are refined far enough to be directly translatable to code.

Todo: Lots! this chapter needs much more commentary.

7.1 Context for a queue

CONTEXT QueueContext
SETS
 TOKEN
 ITEM
CONSTANTS
 QUEUE
AXIOMS
 axm1: finite(TOKEN)
 axm2: finite(ITEM)
 axm3: QUEUE = \{ q | q \in \mathbb{N} \Rightarrow TOKEN \land finite(q) \land \text{dom } q = 1 \ldots \text{card}(q) \}
 thm1: \emptyset \in QUEUE
END

7.2 A Queue machine

MACHINE QueueA
SEES
 QueueContext
VARIABLES
CHAPTER 7. DATA REFINEMENT: A QUEUE MODEL

queue\textsubscript{tokens} tokens for currently queued items
queue the queue of tokens
queue\textsubscript{items} a function for fetching the item associated with a token
qsize current size of queue

INVARIANTS

\begin{align*}
\text{inv1:} & \quad \text{queue\textsubscript{tokens}} \subseteq \text{TOKEN} \\
\text{inv2:} & \quad \text{queue} \in \text{QUEUE} \\
\text{inv3:} & \quad \text{qsize} \in \mathbb{N} \\
\text{inv4:} & \quad \forall i, j \in \text{dom}(\text{queue}) \land i \neq j \Rightarrow \text{queue}(i) \neq \text{queue}(j) \\
\text{thm1:} & \quad \Rightarrow \\
\text{thm2:} & \quad \text{queue\textsubscript{tokens}} = \text{ran}(\text{queue}) \\
\text{thm3:} & \quad \text{card}(\text{queue}) = \text{qsize} \\
\text{thm4:} & \quad \text{queue}-1 \in \text{queue\textsubscript{tokens}} \Rightarrow 1..\text{qsize} \\
\text{thm5:} & \quad \text{queue\textsubscript{tokens}} \neq \emptyset \Rightarrow \text{qsize} \neq 0
\end{align*}

Notation

<table>
<thead>
<tr>
<th>math</th>
<th>ascii</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mapsto</td>
<td>\Rightarrow</td>
</tr>
<tr>
<td>\mapsto</td>
<td>>>></td>
</tr>
</tbody>
</table>

Partial surjection: a surjective function is an *onto* relation which maps to all elements of the range.

<table>
<thead>
<tr>
<th>math</th>
<th>ascii</th>
</tr>
</thead>
</table>
| \mapsto | >>>

Total bijection: a total bijective function is a *one-to-one* and *onto* relation which maps all elements of the domain

EVENTS

Initialisation

\[\triangleq \]

THEN

\begin{align*}
\text{act1:} & \quad \text{queue\textsubscript{tokens}} := \emptyset \\
\text{act2:} & \quad \text{queue} := \emptyset \\
\text{act3:} & \quad \text{qsize} := 0 \\
\text{act4:} & \quad \text{queue\textsubscript{items}} := \emptyset \\
\end{align*}

END

Enqueue

\[\triangleq \]

ANY

\begin{align*}
\text{item} \\
\text{qid}
\end{align*}

WHERE

\begin{align*}
\text{grd1:} & \quad \text{item} \in \text{ITEM} \\
\text{grd2:} & \quad \text{qid} \in \text{TOKEN} \setminus \text{queue\textsubscript{tokens}}
\end{align*}

THEN

\begin{align*}
\text{act1:} & \quad \text{queue\textsubscript{tokens}} := \text{queue\textsubscript{tokens}} \cup \{\text{qid}\} \\
\text{act2:} & \quad \text{queue}(\text{qsize} + 1) := \text{qid} \\
\text{act3:} & \quad \text{queue\textsubscript{items}}(\text{qid}) := \text{item} \\
\text{act4:} & \quad \text{qsize} := \text{qsize} + 1 \\
\end{align*}

END
\textbf{Dequeue} \triangleq \\
\textbf{WHERE} \\
\textbf{grd1:} \quad 0 < \text{qsize} \\
\textbf{THEN} \\
\textbf{act1:} \quad \text{queue} :\!| \quad \text{queue}^\prime \in 1..\text{qsize} - 1 \Rightarrow \text{queuetokens} \setminus \{\text{queue}(1)\} \\
\quad \land (\forall i \in 1..\text{qsize} - 1 \Rightarrow \text{queue}^\prime(i) = \text{queue}(i+1)) \\
\textbf{act2:} \quad \text{queueitems} := \{\text{queue}(1)\} \leftarrow \text{queueitems} \\
\textbf{act3:} \quad \text{queuetokens} := \text{queuetokens} \setminus \{\text{queue}(1)\} \\
\textbf{act4:} \quad \text{qsize} := \text{qsize} - 1 \\
\textbf{END} \\

\textbf{Unqueue} \triangleq \\
\textbf{ANY} \\
\textbf{qid} \\
\textbf{WHERE} \\
\textbf{grd1:} \quad \text{qid} \in \text{queuetokens} \\
\textbf{thm1:} \quad \text{qsize} \neq 0 \\
\textbf{THEN} \\
\textbf{queue} :\!| \quad \text{queue}^\prime \in 1..(\text{qsize} - 1) \Rightarrow \text{queuetokens} \setminus \{\text{qid}\} \\
\quad \land (\text{qsize} = 1 \Rightarrow \text{queue}^\prime = \varnothing) \\
\quad \land (\text{qsize} > 1 \Rightarrow \\
\quad (\forall i \in 1..\text{queue}^{-1}(\text{qid}) - 1 \Rightarrow \text{queue}^\prime(i) = \text{queue}(i)) \\
\quad \land \\
\quad (\forall j \in \text{queue}^{-1}(\text{qid}) + 1..\text{qsize} \Rightarrow \text{queue}^\prime(j - 1) = \text{queue}(j))) \\
\textbf{act2:} \quad \text{queueitems} := \{\text{qid}\} \leftarrow \text{queueitems} \\
\textbf{act3:} \quad \text{queuetokens} := \text{queuetokens} \setminus \{\text{qid}\} \\
\textbf{act4:} \quad \text{qsize} := \text{qsize} - 1 \\
\textbf{END} \\
\textbf{END QueueA}
7.3 A Context that defines an abstract Queue datatype

CONTEXT QueueType

Check extension][EXTENDS

QueueContext

CONSTANTS

ENQUEUE

DEQUEUE

DELETE

AXIOMS

axm1: \(ENQUEUE \in QUEUE \times TOKEN \rightarrow QUEUE \)

axm2: \(\forall q.t \cdot q \in QUEUE \land t \notin ran(q) \rightarrow \) \(\Rightarrow card(ENQUEUE(q \mapsto t)) = card(q) + 1 \)

thm1: \(\forall q.t \cdot q \in QUEUE \land t \notin ran(q) \rightarrow \) \(\Rightarrow dom(ENQUEUE(q \mapsto t)) = 1 \ldots card(q) + 1 \)

axm3: \((i \in dom(q) \Rightarrow ENQUEUE(q \mapsto t)(i) = q(i)) \land (i = card(q) + 1 \Rightarrow ENQUEUE(q \mapsto t)(i) = t) \)

axm4: \(DEQUEUE \in QUEUE \rightarrow QUEUE \)

axm5: \(dom(DEQUEUE) = QUEUE \setminus \{\emptyset\} \)

axm6: \(\Rightarrow DEQUEUE(q) \in 1 \ldots card(q) - 1 \mapsto ran(q) \setminus \{q(1)\} \)

axm7: \(\forall q.q \in dom(DEQUEUE) \rightarrow \) \(\Rightarrow card(DEQUEUE(q)) = card(q) - 1 \)

thm2: \(\forall q.q \in dom(DEQUEUE) \rightarrow \) \(\Rightarrow dom(DEQUEUE(q)) = 1 \ldots card(q) - 1 \)

axm8: \(\Rightarrow DEQUEUE(q)(i) = q(i + 1) \)

axm9: \(DELETE \in QUEUE \times \mathbb{N} \rightarrow QUEUE \)

axm10: \(\forall q.i.q \cdot q \in QUEUE \land i \in dom(q) \rightarrow \) \(\Rightarrow \) \(DELETE(q \mapsto i) \in 1 \ldots card(q) - 1 \mapsto ran(q) \setminus \{q(i)\} \)

axm11: \(\Rightarrow q \mapsto i.q \in dom(DELETE) \)

axm12: \(\forall q.i.q \rightarrow i.q \in dom(DELETE) \rightarrow \) \(\Rightarrow \) \(card(DELETE(q \mapsto i)) = card(q) - 1 \)

thm3: \(\forall q.i.q \rightarrow i.q \in dom(DELETE) \rightarrow \) \(\Rightarrow \) \(dom(DELETE(q \mapsto i)) = 1 \ldots card(q) - 1 \)

axm13: \(\Rightarrow j < i \land j \in dom(q) \Rightarrow DELETE(q \mapsto i)(j) = q(j) \)

\(\land \)

\(\Rightarrow j \geq i \land j + 1 \in dom(q) \Rightarrow DELETE(q \mapsto i)(j) = q(j + 1) \)
7.3. A CONTEXT THAT DEFINES AN ABSTRACT QUEUE DATATYPE
7.4 A more abstract model

Machine QueueB is a refinement of QueueA using the abstract “methods” defined in QueueType. In fact, QueueA could also be refined from QueueB, so the two machines are equivalent models.

```
MACHINE QueueB
REFINES QueueA
SEES QueueType

VARIABLES
queuetokens tokens for currently queued items
queue the queue of tokens
queueitems a function for fetching the item associated with a token
qsize current size of queue

INVARIANTS
inv1: queuetokens ⊆ TOKEN
inv2: queue ∈ QUEUE
inv3: qsize = card(queue)
inv4: queue ∈ 1..qsize ↦ queuetokens
∀i,j⋅i ∈ dom(queue) ∧ j ∈ dom(queue) ∧ i ≠ j

thm1:
queue(i) ≠ queue(j)

thm2:
queuetokens = ran(queue)

thm3:
queue⁻¹ ∈ queuetokens ↦ 1..qsize
∀qid⋅qid ∈ TOKEN \ queuetokens

thm4:
ENQUEUE(queue ↦ qid) = queue ↦ {qsize + 1 ↦ qid})
∀qid⋅qid ∈ queuetokens

thm5:
queue ↦ queue⁻¹(qid) ∈ dom(DELETE)
qsize ≠ 1

thm6:
∀qid,i⋅qid ∈ queuetokens ∧ i ∈ 1..(queue⁻¹(qid) - 1)
⇒
(DELETE(queue ↦ queue⁻¹(qid)))(i) = queue(i)
qsize ≠ 1

thm7:
∀qid,i⋅qid ∈ queuetokens ∧ i ∈ queue⁻¹(qid) + 1..qsize
⇒
(DELETE(queue ↦ queue⁻¹(qid)))(i - 1) = queue(i)
∀qid⋅qid ∈ queuetokens

thm8:
queue⁻¹(qid) ≤ qsize

EVENTS
Initialisation ≜

THEN
act1: queuetokens := ∅
act2: queue := ∅
act3: qsize := 0
act4: queueitems := ∅
7.4. A MORE ABSTRACT MODEL

\[
\text{Enqueue} \cong \\
\text{REFINES} \\
\text{Enqueue}
\]

\[
\begin{align*}
\text{ANY} \\
\text{item} \\
\text{qid} \\
\text{WHERE} \\
\text{grd1: } & \text{ item } \in \text{ITEM} \\
\text{grd2: } & \text{ qid } \in \text{TOKEN} \setminus \text{queuetokens} \\
\text{THEN} \\
\text{act1: } & \text{ queuetokens } := \text{ queuetokens } \cup \{\text{qid}\} \\
\text{act2: } & \text{ queue } := \text{ENQUEUE}(\text{queue } \mapsto \text{qid}) \\
\text{act3: } & \text{ queueitems}(\text{qid}) := \text{item} \\
\text{act4: } & \text{qsize } := \text{qsize } + 1
\end{align*}
\]

\[
\text{END}
\]

\[
\text{Dequeue} \cong \\
\text{REFINES} \\
\text{Dequeue}
\]

\[
\begin{align*}
\text{WHERE} \\
\text{grd1: } & \text{ qsize } \neq 0 \\
\text{THEN} \\
\text{act1: } & \text{ queue } := \text{DEQUEUE}(\text{queue}) \\
\text{act2: } & \text{ queueitems } := \{\text{queue}(1)\} \cup \text{queueitems} \\
\text{act3: } & \text{ queuetokens } := \text{queuetokens} \setminus \{\text{queue}(1)\} \\
\text{act4: } & \text{qsize } := \text{qsize } - 1
\end{align*}
\]

\[
\text{END}
\]

\[
\text{Unqueue} \cong \\
\text{REFINES} \\
\text{Unqueue}
\]

\[
\begin{align*}
\text{ANY} \\
\text{qid} \\
\text{WHERE} \\
\text{grd1: } & \text{ qid } \in \text{queuetokens} \\
\text{THEN} \\
\text{act1: } & \text{ queue } := \text{DELETE}(\text{queue } \mapsto \text{queue}^{-1}(\text{qid})) \\
\text{act2: } & \text{ queueitems } := \{\text{qid}\} \cup \text{queueitems} \\
\text{act3: } & \text{ queuetokens } := \text{queuetokens} \setminus \{\text{qid}\} \\
\text{act4: } & \text{qsize } := \text{qsize } - 1
\end{align*}
\]

\[
\text{END}
\]

\[
\text{END QueueB}
\]
7.5 Changing the data representation

In the following the monolithic queue of the preceding models by a “linked” queue. This models the well-known linked structures familiar in software design and implementation.
In order to be able to demonstrate how the new model simulates the monolithic model the following are required:

**Relational composition:** if \( r_1 \) and \( r_2 \) are two relations over the same set \( X \) then \( r_1; r_2 \) is the forward composition of the two relations.

**Todo:** picture needed

**Relational closure:** is the union of all possible compositions of a relation with itself: \( r; r; \ldots; r \). This turns out to be finite and there are two versions of closure:

**reflexive:** in which the closure contains \( r^0 \) by definition, and

**irreflexive:** in which \( r^0 \) may be present, but is not present by definition.

**Todo:** much more discussion required

The context Iteration defines axioms and theorems for iteration and (irreflexive)closure.

```plaintext
CONTEXT Iteration
EXTENDS
 00 Queuetype

CONSTANTS
 iterate
 iclosure

AXIOMS
```
7.5. CHANGING THE DATA REPRESENTATION

axm1: \( \text{iterate} \in (\text{TOKEN } \leftrightarrow \text{TOKEN}) \times \mathbb{N} \rightarrow (\text{TOKEN } \leftrightarrow \text{TOKEN}) \)
\[ \forall r \cdot r \in \text{TOKEN } \leftrightarrow \text{TOKEN} \]

axm2: \[ \Rightarrow \]
\[ \text{iterate}(r \mapsto 0) = \text{TOKEN } \triangleleft \text{id} \]
\[ \forall r, n \cdot r \in \text{TOKEN } \leftrightarrow \text{TOKEN} \land n \in \mathbb{N} \]

axm3: \[ \Rightarrow \]
\[ \text{iterate}(r \mapsto n) = \text{iterate}(r \mapsto n - 1); r \]
\[ \forall s \cdot s \subseteq \mathbb{N} \land 0 \in s \]

thm1: \[ \land \]
\[ (\forall n \cdot n \in s \Rightarrow n + 1 \in s) \Rightarrow \mathbb{N} \subseteq s \]
\[ \forall r, n \cdot r \in \text{TOKEN } \leftrightarrow \text{TOKEN} \land n \in \mathbb{N} \]

thm2: \[ \Rightarrow \]
\[ \text{dom}(\text{iterate}(r \mapsto n)) \subseteq \text{dom}(r) \]

\[ \forall r, n \cdot r \in \text{TOKEN } \leftrightarrow \text{TOKEN} \land n \in \mathbb{N} \]

thm3: \[ \Rightarrow \]
\[ \text{ran}(\text{iterate}(r \mapsto n)) \subseteq \text{ran}(r) \]

axm4: \( \text{iclosure} \in (\text{TOKEN } \leftrightarrow \text{TOKEN}) \rightarrow (\text{TOKEN } \leftrightarrow \text{TOKEN}) \)
\[ \forall r \cdot r \in \text{TOKEN } \leftrightarrow \text{TOKEN} \]

axm5: \[ \Rightarrow \]
\[ \text{iclosure}(r) = (\bigcup n \cdot n \in \mathbb{N}_1 \text{iterate}(r \mapsto n)) \]
\[ \forall r \cdot r \in \text{TOKEN } \leftrightarrow \text{TOKEN} \]

thm4: \[ \Rightarrow \]
\[ \text{dom}(\text{iclosure}(r)) \subseteq \text{dom}(r) \]

END
MACHINE QueueR
REFINES QueueB
SEES

Iteration

VARIABLES
queuetokens tokens currently in queue
queueitems a function for fetching the item associated with a token
qsize current size of queue
qfirst first item, if any, in queue
qlast last item, if any, in queue
qnext link to next item, if any, in queue

INVARINTS
inv1: qfirst ∈ TOKEN
inv2: qlast ∈ TOKEN
inv3: qsize ≠ 0 ⇒ qfirst = queue(1)
inv4: qsize ≠ 0 ⇒ qlast = queue(qsize)
inv5: qnext ∈ queuetokens ↦ queuetokens
inv6: dom(qnext) = queuetokens \ {qlast}
inv7: qnext \∩ id = ∅
inv8: ran(qnext) = queuetokens \ {qfirst}

thm1: qsize = 1 ⇒ qfirst = qlast
∀i· i ∈ 1..qsize ∧ i < qsize

thm2: qsize ≥ 1 ⇒ iterate(qnext ↦ 0)[{qfirst}] = {queue(1)}
qsize ≥ 1 ⇒ (∀n· n ∈ 1..qsize − 1 ⇒ iterate(qnext ↦ n − 1)[{qfirst}] = {queue(n)})

thm3: ⇒
iterate(qnext ↦ n)[{qfirst}] = {queue(n + 1)})

thm4: qsize ≥ 1 ⇒ (∀n· n ∈ 1..qsize − 1 ⇒ iterate(qnext ↦ n − 1)[{qfirst}] = {queue(n)})

thm5: qsize ≥ 1 ⇒ iclosure(qnext)[{qfirst}] = queuetokens

Notation
math ascii
↦ ↣> partial injective function; injections are one-to-one relations

EVENTS
Initialisation ≜

THEN
act1: queuetokens := ∅
act2: qsize := 0
act3: queueitems := ∅
act4: qfirst ∈ TOKEN
act5: qlast ∈ TOKEN
act6: qnext := ∅

END

Enqueue0 ≜
REFINES Enqueue
7.5. CHANGING THE DATA REPRESENTATION

ANY
  item
  qid
WHERE
  grd1: item ∈ ITEM
  grd2: qid ∈ TOKEN \ queuetokens
  grd3: qsize = 0
THEN
  act1: queuetokens := queuetokens ∪ \{qid\}
  act2: queueitems(qid) := item
  act3: qsize := qsize + 1
  act4: qfirst := qid
  act5: qlast := qid
END

Enqueue1 ≅
REFINES Enqueue
ANY
  item
  qid
WHERE
  grd1: item ∈ ITEM
  grd2: qid ∈ TOKEN \ queuetokens
  grd3: qsize ≠ 0
THEN
  act1: queuetokens := queuetokens ∪ \{qid\}
  act2: queueitems(qid) := item
  act3: qsize := qsize + 1
  act4: qnext(qlast) := qid
  act5: qlast := qid
END

Dequeue0 ≅
REFINES Dequeue
WHERE
  grd1: qsize = 1
THEN
  act1: qsize := qsize − 1
  act2: queuetokens := queuetokens \ \{qfirst\}
  act3: queueitems := \{qfirst\} ⋄ queueitems
  act4: qnext := \{qfirst\} ⋄ qnext
END

Dequeue1 ≅
REFINES Dequeue
WHERE
  grd1: qsize > 1
THEN
act1: \( qsize := qsize - 1 \)
act2: \( \text{queuetokens} := \text{queuetokens} \setminus \{qfirst\} \)
act3: \( \text{queueitems} := \{qfirst\} \triangleleft \text{queueitems} \)
act4: \( qfirst := \text{qnext}(qfirst) \)
act5: \( \text{qnext} := \{qfirst\} \triangleleft \text{qnext} \)
END

Unqueue0 ≡
REFINES
Unqueue
ANY
qid
WHERE
grd1: \( qid \in \text{queuetokens} \)
grd2: \( qsize = 1 \)
THEN
act1: \( \text{queueitems} := \{qid\} \triangleleft \text{queueitems} \)
act2: \( \text{queuetokens} := \text{queuetokens} \setminus \{qid\} \)
act3: \( qsize := qsize - 1 \)
END

Unqueue1 ≡
REFINES
Unqueue
ANY
qid
WHERE
grd1: \( qid \in \text{queuetokens} \)
grd2: \( qsize > 1 \)
grd3: \( qid = qfirst \)
THEN
act1: \( \text{queueitems} := \{qid\} \triangleleft \text{queueitems} \)
act2: \( \text{queuetokens} := \text{queuetokens} \setminus \{qid\} \)
act3: \( qsize := qsize - 1 \)
act4: \( qfirst := \text{qnext}(qid) \)
act5: \( \text{qnext} := \{qid\} \triangleleft \text{qnext} \)
END

Unqueue2 ≡
REFINES
Unqueue
ANY
qid
WHERE
grd1: \( qid \in \text{queuetokens} \)
grd2: \( qsize > 1 \)
grd3: \( qlast = qid \)
THEN
7.6 Further refinement

While the current refinement can be considered to be close to a concrete model that would map reasonably easily into a concrete implementation there is one construct that cannot be considered as concrete: \( qnext^{-1} \) in \texttt{Unqueue3}. This models a backward pointer, but it is mathematics, and cannot be considered as concrete.

\texttt{QueueRR}, a further refinement of \texttt{QueueR} produces a concrete modelling of \( qnext^{-1} \), which is easily seen to be a loop that searches for the queue item that preceded \( \texttt{queue}(qid) \).

\textbf{MACHINE QueueRR}
\textbf{REFINES}
\texttt{QueueR}
\textbf{SEES}
\texttt{Iteration}
\textbf{VARIABLES}
CHAPTER 7. DATA REFINEMENT: A QUEUE MODEL

queuetokens: tokens currently in queue
queueitems: a function that maps tokens to items
qsize: current size of queue
qfirst: first item, if any, in queue
qlast: last item, if any, in queue
qnext: link to next item, if any, in queue
deleting: Unqueue deletion in progress
qprev: concrete version of queue
qidv: copy of qid

INTEGRANTS
inv1: deleting ∈ BOOL
inv2: qprev ∈ TOKEN
inv3: qidv ∈ TOKEN
inv4: deleting = TRUE ⇒ qidv ∈ queuetokens
inv5: deleting = TRUE ⇒ qidv ≠ qfirst
inv6: deleting = TRUE ⇒ qsize > 1
inv7: deleting = TRUE ⇒ qprev ∈ dom(qnext)
      deleting = TRUE
inv8: ⇒
      qidv ∈ iclosure(qnext)[{qprev}]

EVENTS
Initialisation : extended =

THEN
act7: deleting := FALSE
act8: qprev ∈ TOKEN
act9: qidv ∈ TOKEN
END

Enqueue0 : extended =

REFINES
Enqueue0

ANY

WHERE
grd4: deleting = FALSE

THEN
END

Enquire1 : extended =

REFINES
Enquire1

ANY

WHERE
grd4: deleting = FALSE

THEN
END
Dequeue0 : extended \( \equiv \)
REFINES
  Dequeue0
ANY
WHERE
  \( \text{grd}2: \quad \text{deleting} = \text{FALSE} \)
THEN
END

Dequeue1 : extended \( \equiv \)
REFINES
  Dequeue1
WHERE
  \( \text{grd}2: \quad \text{deleting} = \text{FALSE} \)
THEN
END

Unqueue0 : extended \( \equiv \)
REFINES
  Unqueue0
ANY
WHERE
  \( \text{grd}3: \quad \text{deleting} = \text{FALSE} \)
THEN
END

Unqueue1 : extended \( \equiv \)
REFINES
  Unqueue1
ANY
WHERE
THEN
END

Unqueue2 \( \equiv \)
REFINES
  Unqueue2
WHERE
CHAPTER 7. DATA REFINEMENT: A QUEUE MODEL

\[\text{grd1: } \text{deleting} = \text{TRUE} \]
\[\text{grd2: } \text{qnext(qprev)} = \text{qidv} \]
\[\text{grd3: } \text{qlast} = \text{qidv} \]

WITH
\[\text{qid: } \text{qid} = \text{qidv} \]
THEN
\[\text{act1: } \text{queueitems} := \{\text{qidv}\} \setminus \text{queueitems} \]
\[\text{act2: } \text{queuetokens} := \text{queuetokens} \setminus \{\text{qid}\} \]
\[\text{act3: } \text{qsize} := \text{qsize} - 1 \]
\[\text{act4: } \text{qlast} := \text{qprev} \]
\[\text{act5: } \text{qnext} := \text{qnext} \cup \{\text{qidv}\} \]
\[\text{act6: } \text{deleting} := \text{FALSE} \]
END

\[\text{Unqueue3} \equiv \]
\text{REFINES}
\[\text{Unqueue3} \]
WHERE
\[\text{grd1: } \text{deleting} = \text{TRUE} \]
\[\text{grd2: } \text{qnext(qprev)} = \text{qidv} \]
\[\text{grd3: } \text{qidv} \neq \text{qlast} \]
WITH
\[\text{qid: } \text{qid} = \text{qidv} \]
THEN
\[\text{act1: } \text{queueitems} := \{\text{qidv}\} \setminus \text{queueitems} \]
\[\text{act2: } \text{queuetokens} := \text{queuetokens} \setminus \{\text{qidv}\} \]
\[\text{act3: } \text{qsize} := \text{qsize} - 1 \]
\[\text{act4: } \text{qnext(qprev)} := \text{qnext(qidv)} \]
\[\text{act5: } \text{deleting} := \text{FALSE} \]
END

\[\text{UnqueueI} \equiv \] Initialise for search
\[\text{ANY} \]
\[\text{qid} \]
WHERE
\[\text{grd1: } \text{qid} \in \text{queuetokens} \]
\[\text{grd2: } \text{qsize} > 1 \]
\[\text{grd3: } \text{qfirst} \neq \text{qid} \]
\[\text{grd4: } \text{deleting} = \text{FALSE} \]
THEN
\[\text{act1: } \text{qprev} := \text{qfirst} \]
\[\text{act2: } \text{qidv} := \text{qid} \]
\[\text{act3: } \text{deleting} := \text{TRUE} \]
END

\[\text{UnqueueS} \equiv \] Search for predecessor
\[\text{STATUS} \text{ convergent} \]
WHERE
7.6. FURTHER REFINEMENT

\[\text{grd1: } \text{deleting} = \text{TRUE} \]
\[\text{grd2: } q_{\text{next}}(q_{\text{prev}}) \neq q_{\text{idv}} \]
\[\text{THEN} \]
\[\text{act1: } q_{\text{prev}} := q_{\text{next}}(q_{\text{prev}}) \]
\[\text{END} \]

\text{VARIANT}\]
\[\text{icl} closure(q_{\text{next}})[\{q_{\text{prev}}\}] \]
\[\text{END QueueRR} \]
Using layered refinements to develop a model for a lift system.

To learn the lessons of separation of concerns, and hence separation of functionality.

In this chapter we will build a small model of a lift system. Abstractly, a lift can have many incarnations, although most people probably think of something like the arrangement that we will model: a transport mechanism with doors and buttons, etc. You might be interested in [21]. Such lifts actually exist.

Because of the common reaction to the mention of a lift system, there is a strong temptation to introduce too much detail too early and to produce a model that is very difficult to understand. This defeats an important goal of modelling: to produce a model that can be reasoned about both informally and formally.

We will develop the model of the lift system through a number of refinement layers.

8.1 Basic Lift

The first layer, modelled by the BasicLift machine, is concerned with the basic rules for list movement.

Basic Lift Attributes The first step will be to define the basis lift attributes:

What they are: distinguished informally by name;

What they do: how they modify the behaviour of a lift;

What are the parameters: what are the principal controlling parameters of the events;

When they run: the conditions under which the basic lift events can happen.

We will not be concerned with how these lift events might be controlled. At this level the only control is imposed by the guards of the events. This will enable us to establish the conditions under which these lift events are legal.

Of course, as this model develops there will be different manifestations of the basic events with strengthened guards and possibly extra parameters and actions.

LIFTS: there will be some finite set of lifts, modelled here by the finite set LIFT.
STATUS: lifts will have a status. We conceive of three:

MOVING: the lift is active and moving;
STOPPED: the lift is active and stopped;
IDLE: the lift is inactive, but capable of becoming active.

FLOOR: there will be some finite set of floors for each lift. In this model it is assumed that all lifts operate over the same set of floors. We will model the floors as a subrange 0 .. MAXFLOOR, where MAXFLOOR is at least 1, giving distinct top and bottom floors.

Lift Context

CONTEXT Lift_ctx
SETS
DIRECTION
STATUS
LIFT
CONSTANTS
MAXFLOOR
FLOOR
UP
DOWN
IDLE
STOPPED
MOVING
CHANGE

AXIOMS
axm1: \[ MAXFLOOR \in \mathbb{N} \]
axm2: \[ FLOOR = 0 .. MAXFLOOR \]
axm3: finite LIFT
axm4: \[ DIRECTION = \{UP, DOWN\} \]
axm5: \[ UP \neq DOWN \]
axm6: \[ partition(STATUS, \{IDLE\}, \{STOPPED\}, \{MOVING\}) \]
axm7: \[ CHANGE \in DIRECTION \rightarrow DIRECTION \]
axm8: \[ CHANGE = \{UP \mapsto DOWN, DOWN \mapsto UP\} \]

thm1: \[ FLOOR \neq \emptyset \]
thm2: finite FLOOR
thm3: finite STATUS
thm4: finite DIRECTION
thm5: finite CHANGE

END
8.1. BASIC LIFT

Basic Lift machine

The BasicLift machine models basic lift movements, and establishes basic lift constraints.

- The behaviour is nondeterministic:
- there is no attempt to express any sort of lift control or scheduling
  A discipline of lift direction is established:
  - level 0: direction is UP
  - level MAXFLOOR: direction is DOWN
  - other levels: either direction is valid.
- There are no doors.

MACHINE BasicLift
SEES
 Lift_ctx

VARIABLES
  liftposition
  liftstatus
  liftdirection

INVARIANTS
  inv1:  liftposition ∈ LIFT → FLOOR
  thm1:  finite liftposition
  inv2:  liftstatus ∈ LIFT → STATUS
  thm2:  finite liftstatus
  inv3:  liftdirection ∈ LIFT → DIRECTION
  thm3:  finite liftdirection
  inv4:  ∀l · l ∈ LIFT ∧ liftposition(l) = 0
         ⇒ liftdirection(l) = UP
  inv5:  ∀l · l ∈ LIFT ∧ liftposition(l) = MAXFLOOR
         ⇒ liftdirection(l) = DOWN
  thm4:  ∀l · l ∈ LIFT ∧ liftdirection(l) = DOWN
         ⇒ liftposition(l) ≠ 0
  thm5:  ∀l · l ∈ LIFT ∧ liftdirection(l) = UP
         ⇒ liftposition(l) ≠ MAXFLOOR

EVENTS
 Initialisation \(\cong\)

THEN
  act1: liftposition := LIFT × \{0\}
  act2: liftdirection := LIFT × \{UP\}
  act3: liftstatus := LIFT × \{IDLE\}
END

Notation
math ascii
\(\times\) \(\star\star\) \(A \times B\) is the set of all maplets, \(a \mapsto b\), in which \(a \in A\) and \(b \in B\)
IdleLift ≜ Idle lifts cannot move
ANY
   lift
WHERE
   grd1: liftstatus(lift) = STOPPED
THEN
   act1: liftstatus(lift) := IDLE
END

ActivateLift ≜ Ready an Idle lift to enable moving
ANY
   lift
WHERE
   grd1: liftstatus(lift) = IDLE
THEN
   act1: liftstatus(lift) := STOPPED
END

StartLift ≜ Models starting of a stopped lift, maintaining the previous direction
ANY
   lift
WHERE
   grd1: liftstatus(lift) = STOPPED
THEN
   act1: liftstatus(lift) := MOVING
END

ChangeDir ≜ Models the changing of direction of a STOPPED lift
ANY
   lift
WHERE
   grd1: liftstatus(lift) = STOPPED
   grd2: liftposition(lift) ≠ 0
   grd3: liftposition(lift) ≠ MAXFLOOR
THEN
   act1: liftdirection(lift) := CHANGE(liftdirection(lift))
END

MoveUp ≜ Models a lift moving up to the next floor and continuing to move
ANY
WHERE
   grd1: liftstatus(lift) = MOVING
   grd2: liftdirection(lift) = UP
   grd3: liftposition(lift) ≠ MAXFLOOR − 1
THEN
   act1: liftposition(lift) := liftposition(lift) + 1
END
8.1. BASIC LIFT

**MoveUpAndStop** \(\cong\) Models a lift moving up to the next floor and stopping

**ANY**

**lift**

**WHERE**

- **grd1:** \(\text{lifstatus(lift)} = \text{MOVING}\)
- **grd2:** \(\text{liftdirection(lift)} = \text{UP}\)

**THEN**

- **act1:** \(\text{liftposition(lift)} := \text{liftposition(lift)} + 1\)
  - \(\text{liftdirection : liftdirection}' \in \text{LIFT} \rightarrow \text{DIRECTION}\)
  - \((\text{liftposition(lift)} + 1 = \text{MAXFLOOR})\) \(\Rightarrow\)

- **act2:** \(\text{liftdirection}' = \text{liftdirection} \leftrightarrow \{\text{lift} \mapsto \text{DOWN}\}\)
  - \((\text{liftposition(lift)} + 1 \neq \text{MAXFLOOR})\) \(\Rightarrow\)

- **act3:** \((\text{lifstatus(lift)} := \text{STOPPED})\)

**END**

**MoveDown** \(\cong\) Models a lift moving down to the next floor and continuing to move

**ANY**

**lift**

**WHERE**

- **grd1:** \(\text{lifstatus(lift)} = \text{MOVING}\)
- **grd2:** \(\text{liftdirection(lift)} = \text{DOWN}\)
- **grd3:** \(\text{liftposition(lift)} \neq 1\)

**THEN**

- **act1:** \(\text{liftposition(lift)} := \text{liftposition(lift)} - 1\)

**END**

**MoveDownAndStop** \(\cong\) Models a lift moving down to the next floor and stopping

**ANY**

**lift**

**WHERE**

- **grd1:** \(\text{lifstatus(lift)} = \text{MOVING}\)
- **grd2:** \(\text{liftdirection(lift)} = \text{DOWN}\)

**THEN**

- **act1:** \(\text{liftposition(lift)} := \text{liftposition(lift)} - 1\)
  - \(\text{liftdirection : liftdirection}' \in \text{LIFT} \rightarrow \text{DIRECTION}\)
  - \((\text{liftposition(lift)} = 1)\) \(\Rightarrow\)

- **act2:** \(\text{liftdirection}' = \text{liftdirection} \leftrightarrow \{\text{lift} \mapsto \text{UP}\}\)
  - \((\text{liftposition(lift)} + 1 \neq 1)\) \(\Rightarrow\)

- **act3:** \((\text{lifstatus(lift)} := \text{STOPPED})\)

**END**

**END** BasicLift
The above model behaves like a normal lift, but the behaviour is completely nondeterministic; there is no way of influencing the behaviour. For example, there is no way to ensure a particular lift:

- moves;
- moves in a particular direction;
- stops at a particular floor.
8.2 Adding Lift Doors

In the next layer we add *lift doors*, satisfying the following requirements:

**Safety:** a lift door may be open only if the lift is stopped;

**Opening:** while the lift movement is still nondeterministic we require that when a lift stops at a floor then the door must open.

**Door Context**

\begin{verbatim}
CONTEXT Doors_ctx
SETS
  DOORS
CONSTANTS
  CLOSED
  OPENING
  OPEN
  CLOSING
AXIOMS
  axm1: partition(DOORS, {CLOSED}, {OPENING}, {OPEN}, {CLOSING})
END
\end{verbatim}

**Lift Plus Doors**

\begin{verbatim}
MACHINE LiftPlusDoors
REFINES BasicLift
SEES
  Lift_ctx
  Doors_ctx
VARIABLES
  liftposition
  liftstatus
  liftdirection
  liftdoorstatus
INVARIANTS
  inv1: liftdoorstatus ∈ LIFT → DOORS
  thm1: finite(liftdoorstatus)
        ∀l ∈ LIFT ∧ liftstatus(l) ∈ {MOVING, IDLE}
  inv2: ⇒ liftdoorstatus(l) = CLOSED
        ∀l ∈ LIFT ∧ liftstatus(l) ∈ {OPENING, OPEN}
  thm2: ⇒ liftstatus(l) = STOPPED
EVENTS
  INITIALISATION : extended Ð
  THEN
    act4: liftdoorstatus := LIFT × {CLOSED}
END
\end{verbatim}
**OpenLiftDoor** ≜ Open lift door: lift must be STOPPED

\[
\begin{align*}
\text{ANY} & \quad \text{lift} \\
\text{WHERE} & \quad \text{grd1}: \quad \text{liftstatus}(\text{lift}) = \text{STOPPED} \\
& \quad \text{grd2}: \quad \text{liftdoorstatus}(\text{lift}) = \text{OPENING} \\
\text{THEN} & \quad \text{act1}: \quad \text{liftdoorstatus}(\text{lift}) := \text{OPEN} \\
\end{align*}
\]

**CloseLiftDoor** ≜

\[
\begin{align*}
\text{ANY} & \quad \text{lift} \\
\text{WHERE} & \quad \text{grd1}: \quad \text{liftdoorstatus}(\text{lift}) = \text{OPEN} \\
\text{THEN} & \quad \text{act1}: \quad \text{liftdoorstatus}(\text{lift}) := \text{CLOSED} \\
\end{align*}
\]

**IdleLift** : extended ≜ Idle lifts cannot move

\[
\begin{align*}
\text{REFINES} & \quad \text{IdleLift} \\
\text{WHERE} & \quad \text{grd2}: \quad \text{liftdoorstatus}(\text{lift}) = \text{CLOSED} \\
\end{align*}
\]

**ActivateLift** : extended ≜ Ready an Idle lift to enable moving

\[
\begin{align*}
\text{REFINES} & \quad \text{ActivateLift} \\
\text{THEN} & \quad \text{liftdoorstatus} : \mid \text{liftdoorstatus}' \in \text{LIFT} \rightarrow \text{DOORS} \land \\
& \quad (\text{liftdoorstatus}' = \text{liftdoorstatus} \Leftrightarrow \{\text{lift} \mapsto \text{CLOSED}\}) \\
& \quad \lor \\
& \quad (\text{liftdoorstatus}' = \text{liftdoorstatus} \Leftrightarrow \{\text{lift} \mapsto \text{OPENING}\})) \\
\end{align*}
\]

**StartLift** : extended ≜

\[
\begin{align*}
\text{REFINES} & \quad \text{StartLift} \\
\text{WHERE} & \quad \text{grd2}: \quad \text{liftdoorstatus}(\text{lift}) = \text{CLOSED} \\
\end{align*}
\]

**ChangeDir** : extended ≜

\[
\begin{align*}
\text{REFINES} & \quad \text{ChangeDir} \\
\end{align*}
\]
8.2. ADDING LIFT DOORS

\textbf{MoveUp} : \textit{extended} \equiv \text{Models a lift moving up to the next floor and continuing to move} \\
\texttt{REFINES} \\
\texttt{MoveUp} \\
\texttt{END}

\textbf{MoveUpAndStop} : \textit{extended} \equiv \text{Models a lift moving up to the next floor and stopping} \\
\texttt{REFINES} \\
\texttt{MoveUp} \\
\texttt{THEN} \\
\texttt{act4: liftdoorstatus(lift) := OPENING} \\
\texttt{END}

\textbf{MoveDown} : \textit{extended} \equiv \text{Models a lift moving down to the next floor and continuing to move} \\
\texttt{REFINES} \\
\texttt{MoveDown} \\
\texttt{END}

\textbf{MoveDownAndStop} : \textit{extended} \equiv \text{Models a lift moving down to the next floor and stopping} \\
\texttt{REFINES} \\
\texttt{MoveDownAndStop} \\
\texttt{THEN} \\
\texttt{act4: liftdoorstatus(lift) := OPENING} \\
\texttt{END}

\texttt{END LiftPlusDoors}
Adding Floor Doors

In this layer we add floor doors with the following requirements:

1. The floor door opens AFTER the lift door opens;
2. Floor doors may be OPEN only on the floor where a lift is stopped;
3. If a lift is MOVING then the floor door for that lift is CLOSED on all floors;
4. The floor door OPEN implies the lift door OPEN.

**MACHINE LiftPlusFloorDoors**

**REFINES**

LiftPlusDoors

**SEES**

Lift_ctx
Doors_ctx

**VARIABLES**

liftposition
liftstatus
liftdirection
liftdoorstatus
floordoorstatus

**INVARaints**

inv1: floordoorstatus ∈ LIFT → (FLOOR → DOORS)

thm1: finite(floordoorstatus)

∀l⋅l ∈ LIFT ∧ liftdoorstatus(l) ≠ OPEN

inv2: ⇒

floordoorstatus(l)(liftposition(l)) = CLOSED

∀l,f⋅l ∈ LIFT ∧ f ∈ FLOOR \ {liftposition(l)}

inv3: ⇒

floordoorstatus(l)(f) = CLOSED

∀l,f⋅l ∈ LIFT ∧ f ∈ FLOOR ∧ liftstatus(l) = MOVING

thm2: ⇒

floordoorstatus(l)(f) = CLOSED

∀l,f⋅l ∈ LIFT ∧ floordoorstatus(l)(liftposition(l)) ≠ CLOSED

thm3: ⇒

liftdoorstatus(l) ≠ CLOSED

∀l,f⋅l ∈ LIFT ∧ floordoorstatus(l)(liftposition(l)) ≠ CLOSED

inv4: ⇒

liftstatus(l) = STOPPED

**EVENTS**

**INITIALISATION**: extended ≡

**THEN**

act5: floordoorstatus := LIFT × {FLOOR × {CLOSED}}

**END**

OpenFloorDoor ≡

**ANY**

lift

WHERE
8.2. ADDING LIFT DOORS

\[ \text{grd1: } \text{liftstatus}(\text{lift}) = \text{STOPPED} \]
\[ \text{grd2: } \text{liftdoorstatus}(\text{lift}) = \text{OPEN} \]
\[ \text{grd3: } \text{floordoorstatus}(\text{lift})(\text{liftposition}(\text{lift})) = \text{OPENING} \]

THEN

\[ \text{act1: } \text{floordoorstatus}(\text{lift}) := \text{floordoorstatus}(\text{lift}) + \{\text{liftposition}(\text{lift}) \mapsto \text{OPEN}\} \]

END

\[ \text{CloseFloorDoor} \triangleq \]
\[ \text{ANY any lift WHERE } \]
\[ \text{grd1: } \text{floordoorstatus}(\text{lift})(\text{liftposition}(\text{lift})) = \text{OPEN} \]

THEN

\[ \text{act1: } \text{floordoorstatus}(\text{lift}) := \text{floordoorstatus}(\text{lift}) - \{\text{liftposition}(\text{lift}) \mapsto \text{CLOSED}\} \]

END

\[ \text{OpenLiftDoor} : \text{extended} \triangleq \]
\[ \text{REFINES } \text{OpenLiftDoor WHERE } \]

THEN

\[ \text{act2: } \text{floordoorstatus}(\text{lift}) := \text{floordoorstatus}(\text{lift}) - \{\text{liftposition}(\text{lift}) \mapsto \text{OPENING}\} \]

END

\[ \text{CloseLiftDoor} : \text{extended} \triangleq \]
\[ \text{REFINES } \text{CloseLiftDoor WHERE } \]

\[ \text{grd2: } \text{liftdoorstatus}(\text{lift}) = \text{CLOSED} \]

END

\[ \text{StartLift} : \text{extended} \triangleq \]
\[ \text{REFINES } \text{StartLift WHERE } \]

\[ \text{grd2: } \text{liftdoorstatus}(\text{lift}) = \text{CLOSED} \]

END

\[ \text{ChangeDir} : \text{extended} \triangleq \]
\[ \text{REFINES } \text{ChangeDir END} \]

\[ \text{MoveUp} : \text{extended} \triangleq \text{Models a lift moving up to the next floor} \]
\[ \text{REFINES } \]
CHAPTER 8. LIFT SYSTEM MODELLING

8.3 Adding Buttons

We will now add buttons to enable lift passengers to signal their intentions: both inside the lifts and on the floors of the building.

Buttons inside Lift

Buttons Context

CONTEXT
SETS
   BUTTONS
CONSTANTS
   ON
   OFF
AXIOMS
   axm1: partition(BUTTONS, {ON}, {OFF})

Lift Buttons machine

In this layer we model passenger requests for lifts to stop at particular floors, and the consequent scheduling of the lift to stop at those floors. The following scheduling discipline is established:
servicing of floor requests in direction of travel: a lift services all existing requests in its direction of travel;

idle if no requests: if a lift has no current requests it becomes idle.

To manage the scheduling a lift schedule is associated with each lift. The lift schedule is modelled by a set of floors for which there are requests. The lift schedule is more general than the requests recorded by lift buttons, thus allowing the lift schedule to be used to schedule other requests, for example from floor buttons on each floor (outside the lifts) by which passengers request lifts for travel in a particular direction.

MACHINE LiftButtons
REFINES
LiftPlusFloorDoors

SEES
Lift_ctx
Doors_ctx
Buttons_ctx

VARIABLES
liftposition
liftstatus
liftdirection
liftdoorstatus
floordoorstatus
liftbuttons
liftschedule

INVARIANTS
inv1: liftbuttons ∈ LIFT → (FLOOR → BUTTONS)
inv2: liftschedule ∈ LIFT → P(FLOOR)

thm1: ∀l. l ∈ LIFT ⇒ finite(liftschedule(l))

inv3: ∀l, f. l ∈ dom(liftbuttons) ∧ f ∈ dom(liftbuttons(l))
⇒ (liftbuttons(l)(f) = ON ⇒ f ∈ liftschedule(l))

inv4: ∀l. l ∈ LIFT ∧ liftposition(l) ∈ liftschedule(l)
⇒ liftstatus(l) = STOPPED

thm2: ∀l. l ∈ LIFT ∧ liftstatus(l) = MOVING
⇒ liftposition(l) ∉ liftschedule(l)

EVENTS

INITIALISATION: extended ≡

THEN
act6: liftbuttons := LIFT × {FLOOR × {OFF}}
act7: liftschedule := LIFT × {}

END

SelectFloor ≡
ANY
lift
floor
WHERE
CHAPTER 8. LIFT SYSTEM MODELLING

\text{grd1:} \quad floor \in FLOOR
\text{grd2:} \quad liftbuttons(lift)(floor) = OFF
\text{grd3:} \quad liftposition(lift) \neq floor

\text{THEN}
\text{act1:} \quad liftbuttons(lift) := liftbuttons(lift) \cup \{floor \mapsto ON\}
\text{act2:} \quad liftschedule(lift) := liftschedule(lift) \cup \{floor\}

\text{END}

\text{MoveUp : extended} \quad \text{Models a lift moving up to the next floor}
\text{REFINES}
\text{MoveUp}
\text{WHERE}
\text{grd4:} \quad liftschedule(lift) \neq \emptyset
\text{grd5:} \quad liftposition(lift) < \max(liftschedule(lift))
\text{grd6:} \quad liftposition(lift) + 1 \notin liftschedule(lift)

\text{END}

\text{MoveUpAndStop : extended} \quad \text{Models a lift moving up to the next floor and stopping}
\text{REFINES}
\text{MoveUpAndStop}
\text{WHERE}
\text{grd3:} \quad liftposition(lift) + 1 \in liftschedule(lift)

\text{END}

\text{MoveDown : extended} \quad \text{Models a lift moving down to the next floor}
\text{REFINES}
\text{MoveDown}
\text{WHERE}
\text{grd4:} \quad liftschedule(lift) \neq \emptyset
\text{grd5:} \quad liftposition(lift) > \min(liftschedule(lift))
\text{grd6:} \quad liftposition(lift) - 1 \notin liftschedule(lift)

\text{END}

\text{MoveDownAndStop : extended} \quad \text{Models a lift moving down to the next floor and stopping}
\text{REFINES}
\text{MoveDownAndStop}
\text{WHERE}
\text{grd3:} \quad liftposition(lift) - 1 \in liftschedule(lift)

\text{END}

\text{ActivateLiftClosed} \quad \text{Ready an Idle lift to enable moving, but leave doors CLOSED}
\text{REFINES}
\text{ActivateLift}
\text{ANY}
\text{lift}
\text{WHERE}
8.3. ADDING BUTTONS

$$\text{grd1: } \text{liftstatus}(lift) \quad \text{IDLE}$$
$$\text{grd2: } \text{liftschedule}(lift) \neq \emptyset$$
$$\text{grd3: } \text{liftposition}(lift) \notin \text{liftschedule}(lift)$$

THEN

$$\text{act1: } \text{liftstatus}(lift) := \text{STOPPED}$$
$$\text{act2: } \text{liftdoorstatus} := \text{liftdoorstatus} \cup \{lift \mapsto \text{CLOSED}\}$$

END

ActivateLiftOpen \(\triangleq\) Ready an Idle lift to enable moving, but commence opening doors

REFINES

ActivateLift

ANY

lift

WHERE

$$\text{grd1: } \text{liftstatus}(lift) \quad \text{IDLE}$$
$$\text{grd2: } \text{liftschedule}(lift) \neq \emptyset$$
$$\text{grd3: } \text{liftposition}(lift) \notin \text{liftschedule}(lift)$$

THEN

$$\text{act1: } \text{liftstatus}(lift) := \text{STOPPED}$$
$$\text{act2: } \text{liftdoorstatus} := \text{liftdoorstatus} \cup \{lift \mapsto \text{OPENING}\}$$

END

ExtendLiftSchedule \(\triangleq\) Extend the lift schedule

ANY

lift

floor

WHERE

$$\text{grd1: } lift \in \text{LIFT}$$
$$\text{grd2: } floor \in \text{FLOOR}$$
$$\text{grd3: } \text{liftposition}(lift) \neq floor$$

THEN

$$\text{act1: } \text{liftschedule}(lift) := \text{liftschedule}(lift) \cup \{floor\}$$

END

ContractLiftSchedule \(\triangleq\) Remove floor from liftschedule

ANY

lift

floor

WHERE

$$\text{grd1: } lift \in \text{LIFT}$$
$$\text{grd2: } floor \in \text{FLOOR}$$
$$\text{grd3: } floor \in \text{liftschedule}(lift)$$
$$\text{grd4: } \text{liftbuttons}(lift)(floor) = \text{OFF}$$

THEN

$$\text{act1: } \text{liftschedule}(lift) := \text{liftschedule}(lift) \setminus \{floor\}$$

END

OpenFloorDoor : extended \(\triangleq\)

REFINES

OpenFloorDoor
WHERE
  grd4: liftposition(lift) ∈ liftschedule(lift)
END

CloseFloorDoor : extended ≜
REFINES CloseFloorDoor
THEN
  act2: liftschedule(lift) := liftschedule(lift) \ liftposition(lift)
  act3: liftbuttons(lift) := liftbuttons(lift) ⊖ {liftposition(lift) ↦ OFF}
END

OpenLiftDoor : extended ≜
REFINES OpenLiftDoor
WHERE
  grd3: liftposition(lift) ∈ liftschedule(lift)
END

CloseLiftDoor : extended ≜
REFINES CloseLiftDoor
END

IdleLift : extended ≜ Idle lifts cannot move
REFINES IdleLift
WHERE
  grd3: liftschedule(lift) = ∅
END

StartLift : extended ≜
REFINES StartLift
WHERE
  grd3: liftschedule(lift) ≠ ∅
  liftdirection(lift) = DOWN
  grd4: ⇒ liftposition(lift) > min(liftschedule(lift))
  liftdirection(lift) = UP
  grd5: ⇒ liftposition(lift) < max(liftschedule(lift))
  grd6: liftposition(lift) ∉ liftschedule(lift)
END
8.3. ADDING BUTTONS

\textbf{ChangeDir} : \textit{extended} \triangleq

\textbf{REFINES}
\textbf{ChangeDir}

\textbf{WHERE}

\begin{align*}
\text{grd4:} & \quad \text{liftschedule}(\text{lift}) \neq \emptyset \\
& \quad \text{liftdirection}(\text{lift}) = \text{UP} \\
\text{grd5:} & \quad \Rightarrow \\
& \quad \text{liftposition}(\text{lift}) > \max(\text{liftschedule}(\text{lift})) \\
& \quad \text{liftdirection}(\text{lift}) = \text{DOWN} \\
\text{grd6:} & \quad \Rightarrow \\
& \quad \text{liftposition}(\text{lift}) < \min(\text{liftschedule}(\text{lift}))
\end{align*}

\textbf{END}

\textbf{END LiftButtons}

\textbf{Floor Buttons}

The next layer refines \textit{LiftButtons} to model floor requests and their scheduling.

This machine is left as an exercise for the reader.
Chapter 9

Proof Obligations

All proof obligations have a name and an abbreviation:

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>Needed to discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>INV</td>
<td>Invariant</td>
<td></td>
</tr>
<tr>
<td>FIS</td>
<td>Feasibility</td>
<td></td>
</tr>
<tr>
<td>WD</td>
<td>Well-definedness</td>
<td></td>
</tr>
<tr>
<td>GRD</td>
<td>Guard</td>
<td></td>
</tr>
<tr>
<td>EQL</td>
<td>Equal</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 10

Exercises

10.1 Relations and Functions

You need to gain familiarity with the various types of relations used in B, as these will dominate the models you will be building. There are a confusingly large number of arrows that you will need to master.

A relation is simply a set of pairings between two sets, for example between FRIENDS and their PHONE numbers. We might have a set of such pairings in the set phone, which we might declare as

\[
\text{phone} \in \text{FRIENDS} \leftrightarrow \text{PHONE}
\]

In Event-B a pair is denoted using the maps to symbol \(\mapsto\), for example

\[
\text{phone} = \{\text{Jim} \mapsto 0456123456, \text{Lisa} \mapsto 0423456234, \text{Jim} \mapsto 0293084321, \ldots\}
\]

Notice that relations can be many to many, there can be many friends mapping to telephone numbers, but also each friend may have many telephone numbers.

Functions are many to one, meaning that there are many things, but each thing can map to only one value. You’ve met functions in mathematics and maybe other places.

There are two basic sort of functions:

**Partial functions:** \(f \in X \mapsto Y\), a function that may not be defined everwhere in \(X\), for example a function between friend and their partner.

**Total functions:** \(f \in X \to Y\), a function that is defined everywher in \(X\), for example the function that maps each number to its square.

Having got that far we don’t leave it there. We further restrict functions as follows:

**Injective functions:** \(f \in X \mapsto Y\), or \(f \in X \mapsto Y\), one to one functions, where \(f(x) = f(y)\) only if \(x = y\), for example a function from person and their licence number, assuming that each person is uniquely identified.

**Surjective function:** \(f \in X \mapsto Y\), or \(f \in X \mapsto Y\), onto functions, where each value of \(Y\) is equal to \(f(x)\) for some value of \(x\) in \(X\).

**Bijective functions:** \(f \in X \mapsto Y\), one-to-one and onto functions.

It is important to recognise and use these relationships when developing a model.
Exercises

Investigate the relationships for the following:

1. the sibling relationship between people;
2. the brother and sister relationships between people;
3. the relationship between people and their cars;
4. the relationship between people and registration plates;
5. relationships in student enrolment at UNSW;
6. the relationship between coin denominations and their value;
7. the relationship that describes the coins you have in your pocket;
8. relationships concerning products on a supermarket shelf;
9. the relationship between courses and lecturers.

More on Sets

These exercises are intended to familiarise you with set concepts and the way EventB uses sets to model mathematical concepts. The tutorial also introduces EventB notation.

It is recommended that these exercise should be done in conjunction with the B Concise Summary. Also, while notation needs to be understood and this involves semantics, it is recommended that the reasoning about expressions should be conducted syntactically.

In this tutorial we also use single letters, which we will call jokers (from Classical-B), to represent arbitrary expressions and we utilise the notation of EventB proof theories (rules) for expressing properties. Thus when we say, “let S be a set”, S is an expression, which in this case must be a set expression, for example $\text{members} \cup \{\text{newmember}\}$. You should not think of single letters as being variables.

A rule has the form $P \Rightarrow Q$, stating that if we know $P$ is true, then $Q$ is true. For example,

$$A \subseteq B \land a \in A \Rightarrow a \in B.$$ 

Notice that while rules look like predicates, the elements of the rule are not typed, for example in the above rule $A$ and $B$ are both sets and their types must be compatible, otherwise $A \subseteq B$ would not be defined. The rules are higher order logic, not first-order as used in EventB machines.

The use of the joker and proof rule notation allows us to say things about arbitrary expressions so long as they are well-typed.

Simple sets

The basis of EventB is simple sets. A set is an unordered collection of things, without multiplicity. The only property of sets is membership: we can evaluate $x \in X$, “$x$ is a member of $X$”. Finite sets have cardinality, $\text{card}(S)$, the number of elements in $S$. Infinite sets do not have cardinality; EventB does not have an infinity.
Powersets  From a simple set \( S \) we can form the powerset of \( S \), written \( \mathcal{P}(S) \), which is the set of all subsets of \( S \). We can define \( \mathcal{P}(S) \) using set comprehension:

\[
\mathcal{P}(S) = \{ s \mid s \subseteq S \}
\]

We could also use a symmetric rule to express a property of powersets

\[
p \in \mathcal{P}(P) \Rightarrow p \subseteq P
\]

\[
p \subseteq P \Rightarrow p \in \mathcal{P}(P)
\]

Also,

\( S \in \mathcal{P}(S) \)

Products  Given two sets \( S \) and \( T \) we can form the product of \( S \) and \( T \), sometimes called the Cartesian product denoted \( S \times T \). The product is the set of ordered pairs taken respectively from \( S \) and \( T \):

\[
S \times T = \{ x, y \mid x \in S \land y \in T \}
\]

A rule for products is

\[
a \mapsto b \in A \times B \Rightarrow a \in A \land b \in EventB
\]

The following sets are used in the exercises:

\[
NAMES = \{ \text{Jack, Jill} \};
\]

\[
PHONE = \{ 123, 456, 789 \}
\]

10. In this question you will be dealing with products, or sets of pairs. Instead of writing a pair as \((a, b)\), which is probably what you would normally do, write them as \( a \mapsto b \), where \( \mapsto \) is pronounced “maps to”.

j) What is \( NAMES \times PHONE? \)

k) What might it represent (model)?

l) What is \( \text{card}(NAMES \times PHONE)? \)

m) What is \( \text{card}(NAMES \times \{\})? \)

n) What is \( \mathcal{P}(S)? \)

o) Given \( \text{card}(S) = N \), what is \( \text{card}(\mathcal{P}(S))? \)

p) What is \( \text{card}(\mathcal{P}(NAMES \times PHONE))? \)

q) What does \( \text{card}(\mathcal{P}(NAMES \times PHONE)) \) give you?

r) Is \( NAMES \times PHONE \) a function?

s) Give a functional subset.

t) Give a total functional subset.

u) If a subset \( S \) is described as a partial functional set, which of the following is correct?

i. \( S \) is not a total functional set.

ii. \( S \) might not be a total functional set

All of the following classes of functions may be total or not total.

v) Give a injective functional subset.

w) Give a surjective functional subset.

x) Give a (total) bijective functional subset.
Relations  Any subset of $X \times Y$ is called a (many-to-many) relation. The set of all relations between $X$ and $Y$ is denoted $X \leftrightarrow Y$. Since each relation is an element of $X \times Y$, it follows that $X \leftrightarrow Y = \mathcal{P}(X \times Y)$. This could be expressed by a rule:

$$r \in X \leftrightarrow Y \Rightarrow r \in \mathcal{P}(X \times Y)$$

Domain and range  Given a relation $r$, where $r \in X \leftrightarrow Y$ then the domain of $r$, $\text{dom}(r)$, is the subset of $X$ for which a relation is defined. The range of $r$, $\text{ran}(r)$ is the subset of $Y$ onto which the $\text{dom}(r)$ is mapped. Here are some rules:

$$r \in X \leftrightarrow Y \Rightarrow \text{dom}(r) \subseteq X \land \text{ran}(r) \subseteq Y$$

$$r \in X \leftrightarrow Y \land x \mapsto y \in r \Rightarrow x \in \text{dom}(r) \land y \in \text{ran}(r)$$

11. Given $\text{phonebook} \in \text{NAMES} \leftrightarrow \text{PHONE}$,

a) Give some examples of $\text{phonebook}$.

b) Give $\text{NAMES} \leftrightarrow \text{PHONE}$.

c) What is $\text{card}(\text{NAMES} \leftrightarrow \text{PHONE})$?

Relational inverse  The relational inverse of $r$, $r^{-1}$, is the relation produced by inverting the mappings within $r$

$$r \in X \leftrightarrow Y \land x \mapsto y \in r \Rightarrow y \mapsto x \in r^{-1}$$

Domain and range restriction  Domain (range) restriction restricts the domain (range) of a relation. $s \lhd r$ is the relation $r$ domain restricted to $s$. This gives a subset of the relation $r$ whose domain is a subset of $s$:

$$r \in X \leftrightarrow Y \land s \subseteq X \Rightarrow s \lhd r \subseteq r \land \text{dom}(s \lhd r) \subseteq s$$

$r \rhd s$ is the relation $r$ range restricted to $s$. This gives a subset of the relation $r$ whose range is a subset of $s$:

$$r \in X \leftrightarrow Y \land s \subseteq Y \Rightarrow r \rhd s \subseteq r \land \text{ran}(r \rhd s) \subseteq s$$

Relational image  The relational image $r[s]$ give the image of a set $s$ under the relation $r$: the mapping of all elements of $s$ according to the maplets in $r$:

$$r[s] = \text{ran}(s \lhd r)$$

Relational image is the counterpart for relations of functional application for functions; the former being many-to-many and the latter many-to-one.

12. Given $\text{phonebook} = \{ \text{Jack} \mapsto 123, \text{Jack} \mapsto 789, \text{Jill} \mapsto 456, \text{Jill} \mapsto 789 \}$

a) What is $\text{dom}(\text{phonebook})$?

b) What is $\text{ran}(\text{phonebook})$?

c) What is $\text{phonebook} \lhd \{ \text{Jack} \mapsto 123 \}$?
d) What is \{Jack\} ⊂ phonebook?
e) What is \{Jack\} ⊆ phonebook?
f) What is phonebook \ni \{123, 789\}?
g) What is phonebook \ni \{123, 789\}?
h) What is phonebook[\{Jack\}]?

Functions Functions are many-to-one relations. X → Y is the set of all partial functions formed from X and Y. A many-to-one relation is one where each element of the domain maps to only one value in the range, as illustrated by the following rule:

\[ f \in X \mapsto Y \land x \mapsto u \in f \land x \mapsto v \Rightarrow u = v \]

Partial functions are the most general form of function. For every x in the domain of a function \( f \) \( (x \in \text{dom}(f)) \) we can write \( f(x) \) to obtain the value x maps to under f, that is

\[ f \in X \mapsto Y \land x \mapsto y \Rightarrow f(x) = y \]

13. a) Give NAMES \mapsto PHONE.
b) What is card(NAMES \mapsto PHONE)?

Total functions X → Y is the set of all total functions formed from X and Y. Total functions are (partial) functions with maximal domains:

\[ f \in X \mapsto Y \Rightarrow \text{dom}(f) = X \]

14. a) Give NAMES → PHONE.
b) What is card(NAMES → PHONE)?

Partial injective functions X ↦→ Y is the set of all partial, injective functions formed from X and Y. An injective function is a one-to-one relation:

\[ f \in X \mapsto Y \land u \mapsto y \in f \land v \mapsto y \in f \Rightarrow u = v \]

15. a) Give NAMES ↦→ PHONE.
b) What is card(NAMES ↦→ PHONE)?

Total injective functions X ↦ Y is the set of all total, injective functions formed from X and Y. A total injective function is both total and injective:

\[ f \in X \mapsto Y \Rightarrow f \in X \mapsto Y \land f \in X \rightarrow f \]

16. a) Give NAMES ↦ PHONE.
b) What is card(NAMES ↦ PHONE)?
Surjective functions \( X \mapsto Y \) is the set of all partial, surjective functions formed from \( X \) and \( Y \). A surjective function is a functional onto relations; a function whose range is maximal:

\[
f \in X \mapsto Y \Rightarrow \text{ran}(f) = Y
\]

17. a) Give \( \text{NAMES} \mapsto \text{PHONE} \).
   b) What is \( \text{card} (\text{NAMES} \mapsto \text{PHONE}) \)?

Total surjective functions \( X \mapsto Y \) is the set of all total, surjective functions formed from \( X \) and \( Y \). A total surjective function is both total and surjective:

\[
f \in X \mapsto Y \Rightarrow f \in X \to Y \land f \in X \mapsto Y
\]

18. a) Give \( \text{NAMES} \mapsto \text{PHONE} \).
   b) What is \( \text{card} (\text{NAMES} \mapsto \text{PHONE}) \)?

Bijective functions \( X \mapsto Y \) is the set of all (total) injective and surjective functions formed from \( X \) and \( Y \). A bijective function is total, injective and surjective.

\[
f \in X \mapsto Y \Rightarrow f \in f \to Y \land f \in f \mapsto Y \land f \in f \mapsto Y
\]

19. a) Give \( \text{NAMES} \mapsto \text{PHONE} \).
   b) What is \( \text{card} (\text{NAMES} \mapsto \text{PHONE}) \)?
   c) Why is a partial bijection unnecessary?

20. Suppose \( \text{STUDENTS} \) is the set of all students that could be enrolled in a particular course. Students pass a course if they gain at least 50 marks in the final examination. Given a function \( \text{results} \in \text{STUDENTS} \mapsto \mathbb{N} \), that yields the examination result for a particular student, specify

   a) the set of students that pass;
   b) the set of students that fail.

21. If we were modelling a taxi fleet company we might have three variables, \( \text{drivers}, \text{taxis} \) and \( \text{assigned} \) constrained by

\[
\begin{align*}
\text{drivers} & \in \mathbb{P}(\text{DRIVERS}) \\
\text{taxis} & \in \mathbb{P}(\text{TAXIS}) \\
\text{assigned} & \in \text{drivers} \mapsto \text{taxis}
\end{align*}
\]

where \( \text{DRIVERS} \) is the set of possible drivers, \( \text{TAXIS} \) is the set of possible taxis, \( \text{drivers} \) is the set of drivers working for the company, \( \text{taxis} \) is the set of taxis owned by the company, and \( \text{assigned} \) is a function recording the assignment of drivers to taxis.

The arrow \( \text{inj} \) denotes a partial injective function. An injective function is a one-to-one function.

   a) Why is \( \text{assigned} \) a function?
   b) Why is \( \text{assigned} \) a partial function?
   c) Why is \( \text{assigned} \) an injective function?
   d) Specify the drivers who are currently assigned.
e) Specify the drivers who are currently unassigned.

f) Specify the taxis that are currently assigned.

g) Specify the taxis that are currently unassigned.

22. Are the following rules correct or incorrect?

a) \( f \in X \to Y \Rightarrow f \in X \to Y \)

b) \( f \in X \mapsto Y \Rightarrow f \in X \to Y \)

c) \( f \in X \mapsto Y \Rightarrow f \in X \to Y \)

d) \( f \in X \mapsto Y \Rightarrow f \in X \to Y \)

e) \( f \in X \mapsto Y \Rightarrow f \in X \mapsto Y \)

f) \( f \in X \mapsto Y \Rightarrow f \in X \to Y \)

g) \( f \in X \mapsto Y \Rightarrow f \in X \to Y \)

h) \( f \in X \mapsto Y \Rightarrow f \in X \mapsto Y \)

i) \( f \in X \mapsto Y \Rightarrow f \in X \to Y \)

j) \( f \in X \mapsto Y \Rightarrow f \in X \to Y \)

k) \( f \in X \mapsto Y \Rightarrow \text{ran}(f) = Y \)

l) \( f \in X \mapsto Y \land x \in \text{dom}(f) \Rightarrow f[\{x\}] = \{f(x)\} \)

m) \((r^{-1})^{-1} = r\)

n) \( r \in X \leftrightarrow Y \Rightarrow \text{dom}(r^{-1}) = \text{ran}(r) \)

o) \( r \in X \leftrightarrow Y \Rightarrow \text{ran}(r^{-1}) = \text{dom}(r) \)

p) \( r \in X \leftrightarrow Y \Rightarrow \text{ran}(r) \in Y \)

q) \( r \in X \leftrightarrow Y \Rightarrow \text{ran}(r) \subseteq Y \)

r) \( r \in X \leftrightarrow Y \Rightarrow \text{ran}(r) \in P(Y) \)

23. \( \text{union}(S) \) is the generalised union of the elements of \( S \), that is, if \( S \) is a set of sets, then \( \text{union}(S) \) is the union of all of the sets that are contained in \( S \). What is \( \text{union}({}) \)?

24. \( \text{inter}(S) \) is the generalised intersection of the elements of \( S \), that is, if \( S \) is a set of sets, then \( \text{inter}(S) \) is the intersection of all of the sets that are contained in \( S \). What is \( \text{inter}({}) \)?

25. Two subsets of a set \( S \) are said to be disjoint if and only if they have no elements in common. Define a binary relation \( \text{disjoint} \) that holds between a pair of subsets of \( S \) exactly when they are disjoint.

26. A set of subsets of \( S \) is said to be pairwise disjoint if and only if every pair of distinct sets in it is disjoint (in the sense of (c)). A partition of a set \( S \) is a pairwise disjoint set of subsets of \( S \) whose generalised union is equal to \( S \).

a) Define the set of all partitions of \( S \).

b) Which of the subsets of \( \{a, b\} \) are partitions of \( \{a, b\} \)?
10.2 A Simple Bank Machine

The objective of this tutorial exercise is to develop EventB models. In all cases the resulting machines should be introduced into the Rodin Toolkit, analyzed, proof obligations generated, the autoprover run and any remaining undischarged proof obligations inspected carefully. In many cases it would be a good idea to animate the machine.

1. **A simple bank** Produce a model, consisting of `SimpleBank_ctx` and `SimpleBank` machines, of a very simple bank with the following requirements. Follow the English very carefully.

   - **accounts** the bank customers are represented by accounts. Having obtained an account a customer may use the other operations supported by the bank.
   - **balance** the bank needs to maintain a balance for all accounts.
   - **NewAccount** an operation by which a customer obtains an account identifier. Account identifiers are allocated from a pool (set) of identifiers maintained by the bank.
   - **Deposit** an operation to add an *amount* to an *account* balance.
   - **Withdraw** an operation withdraw an *amount* from an *account*. Customers cannot withdraw more than the balance in their account.
   - **Balance** an enquiry operation for a customer to obtain the *balance* in their *account*.
   - **Holdings** an operation that returns the total sum of all the balances held by the bank. Clearly this should be a privileged operation not able to be run by anyone, but we will keep things simple.
   - **Transfer** an operation that transfers an *amount* of money from one bank account to another.

**Note:** the balance and all other money amounts can be represented by natural numbers.
10.3 Supermarket Model

The objective of this set of tutorial exercises is to develop a model of a simple supermarket.

The Supermarket_ctx context

This context models the “things” that you find in a supermarket.

**CONTEXT Supermarket_ctx**

**SETS**
- TROLLEY
- PRODUCT

**CONSTANTS**
- MAXPRICE
- SHELF
- PRICE
- Milk
- Cheese
- Cereal

**AXIOMS**
- axm1: \( MAXPRICE \in \mathbb{N} \)
- axm2: \( PRICE = 0 \ldots MAXPRICE \)
- axm3: \( SHELF = PRODUCT \rightarrow \mathbb{N}_1 \)
- axm4: \( partition(PRODUCT, (Milk), (Cheese), (Cereal)) \)
- axm5: \( BASKET = PRODUCT \rightarrow \mathbb{N}_1 \)

Explain the sets and constants you see in the above machine.

The Supermarket machine

For the supermarket we want to model the products in the supermarket, the shelf containing the products, the trolleys available for customers, the customers with trolleys and products in those trolleys.

**Important:** all products on the shelves of the supermarket and in the trolleys must have a price.

Here is part of the Supermarket machine.

**MACHINE Supermarket**

**SEES**
- Supermarket_ctx

**VARIABLES**
- shelf
- trolleys
- products
- price
- customers
- reorderlevel
- reorder
- topay
- stock

**ININVARIANTS**
inv1: $shelf \in SHELF$
inv2: $trolleys \subseteq TROLLEY$
inv3: $products \subseteq PRODUCT$
inv4: $price \in products \rightarrow PRICE$
inv5: $products = \text{dom}(price)$
inv6: $\text{dom}(shelf) = products$
inv7: $customers \subseteq trolleys \rightarrow BASKET$
inv8: $\forall t \cdot t \in \text{dom}(customers) \Rightarrow \text{dom}(customers(t)) \subseteq products$
inv9: $\text{reorderlevel} \subseteq products \rightarrow \mathbb{N}_1$
inv10: $\text{reorder} \subseteq products$
inv11: $\text{topay} \subseteq trolleys \rightarrow \mathbb{N}$
inv12: $\text{stock} \in products \rightarrow \mathbb{N}$

EVENTS

INITIALISATION $\triangleq$

...  

END

...  

END Supermarket

The above machine is intended to model:

- products on the shelf of the supermarket
- products in customer trolleys
- total stock of products: note that $stock$ includes all products that are still in the supermarket, either on the shelf, in customers’ trolleys or perhaps in reserve somewhere else in the supermarket.
- checkout
- stock alert when stock level drops below some minimum requirement

Complete the Initialisation and add the following events:

Setprice set the price of a product;
AddStock add some amount of product to the supermarket stock;
AddProductShelf add some amount of product to the shelf of the supermarket;
GetTrolley get a vacant trolley;
AddProductTrolley take some amount of product on shelf and add to trolley;
RemProductTrolley take some amount of product from trolley and return to shelf.
SetMinStock set the minimum amount of product to have in stock;
CheckOut checkout product from trolley;
10.3. SUPERMARKET MODEL

**Pay** pay for products in *trolley*;

**ReturnTrolley** return empty *trolley*;

**ReStock** indicate that stock of *product* has fallen below minimum stock level.

**Refinement of Supermarket Machine**

Refine the Supermarket machine, especially showing two methods of implementing CheckOut: one allowing multiple product items to be processed and the other processing one product item at a time.

Events that don’t change can be simply inherited using the mysterious first menu on the event line in Rodin.
Chapter 11

Solutions

11.1 Relations and Functions

1. the sibling relationship between people;
   sibling is clearly a many-to-many relation, that is it is simply a relation and can’t be further
   strengthened: sibling \in people \leftrightarrow people.

2. the brother and sister relationships between people;
   brother and sister are similar to sibling, indeed each is a subset of sibling: brother \subseteq sibling,
   sister \subseteq sibling.

3. the relationship between people and their cars;
   People may have many cars, so again this is simply a relation.

4. the relationship between people and registration plates;
   Registrations are between a registration number and a person (or maybe an identified group of
   people), so this is functional and what’s more it is injective, that is one-to-one.

5. relationships in student enrolment at UNSW;
   The relation between a student identifier and a student is an injective function.

6. the relationship between coin denominations and their value;
   Again, an injective function.

7. the relationship that describes the coins you have in your pocket;
   You probably have many coins in your pocket, and possibly many of the same coin denominations,
   so the relation is a function between the coin denomination and the number you have in your
   pocket. Incidentally, this is known as a bag.

8. relationships concerning products on a supermarket shelf;
   Similar to the preceding question: the relation is functional, between products and the number of
   each product on the shelf.

9. the relationship between courses and lecturers.
   Generally, this will only be a relation.

10. In this question you will be dealing with products, or sets of pairs. Instead of writing a pair
    as \((a, b)\), which is probably what you would normally do, write them as \(a \mapsto b\), where \(\mapsto\) is
    pronounced “maps to”.

105
11. Any subset of \( X \) from phonebook
\[ \text{card} \left( \text{ PHONE } \times \text{ NAMES } \right) = 6 = \text{card}(\text{ PHONE }) \times \text{card}(\text{ NAMES }) = 2 \times 3 \]

1. What does \( \text{card}(\text{ PHONE } \times \text{ NAMES }) \) give you? It gives you all possible configurations of your phone book.

2. Is \( \text{ PHONE } \times \text{ NAMES } \) a function? No, it’s many to many.

3. Give a total functional subset. \{Jack \mapsto 123\}

4. Give a total functional subset. \{Jack \mapsto 123, Jill \mapsto 123\}

5. If a subset \( S \) is described as a partial functional set, which of the following is correct?
   - (i) \( S \) is not a total functional set.
   - (ii) \( S \) might not be a total functional set

6. What is \( \text{card}(\text{ PHONE } \times \text{ PHONE }) \)?
   \[ \text{card}(\text{ PHONE } \times \text{ PHONE }) = 2^{\text{card}(\text{ PHONE } \times \text{ PHONE })} = 2^6 = 64 \]

7. What does \( \text{card}(\text{ PHONE } \times \text{ PHONE }) \) give you? It gives you all possible mappings between elements of \( \text{ PHONE } \) and elements of \( \text{ PHONE } \), ie it gives you all possible configurations of your phone book.

8. Is \( \text{ PHONE } \times \text{ PHONE } \) a function? No, it’s many to many.

9. Give some examples of phonebook. \{Jack \mapsto 123, \text{PHONE } \mapsto 456, \text{PHONE } \mapsto 789\}

10. Give \( \text{ PHONE } \leftrightarrow \text{ PHONE } \).
\[ \text{ PHONE } \leftrightarrow \text{ PHONE } = \{ \}
\]
\[ \{ \{Jack \mapsto 123\}, \{Jack \mapsto 456\}, \{Jack \mapsto 789\}, \{Jill \mapsto 123\}, \{Jill \mapsto 456\}, \{Jill \mapsto 789\}, \{Jack \mapsto 123, Jack \mapsto 456\}, \{Jack \mapsto 123, Jack \mapsto 789\}, \{Jack \mapsto 456, Jack \mapsto 789\}, \{Jack \mapsto 123, Jill \mapsto 123\}, \{Jack \mapsto 123, Jill \mapsto 456\}, \{Jack \mapsto 123, Jill \mapsto 789\}, \{Jack \mapsto 456, Jill \mapsto 123\}, \{Jack \mapsto 456, Jill \mapsto 456\}, \{Jack \mapsto 456, Jill \mapsto 789\}, \}
\]
\{Jack \mapsto 789, Jill \mapsto 123\}, \{Jack \mapsto 789, Jill \mapsto 456\}, \{Jack \mapsto 789, Jill \mapsto 789\}, \\
\{Jack \mapsto 123, Jack \mapsto 456, Jack \mapsto 789\}, \\
\{Jack \mapsto 123, Jack \mapsto 456, Jill \mapsto 123\}, \{Jack \mapsto 123, Jack \mapsto 789, Jill \mapsto 123\}, \\
\{Jack \mapsto 456, Jack \mapsto 789, Jill \mapsto 123\}, \{Jack \mapsto 123, Jack \mapsto 456, Jill \mapsto 456\}, \\
\{Jack \mapsto 123, Jack \mapsto 456, Jill \mapsto 456\}, \{Jack \mapsto 123, Jack \mapsto 789, Jill \mapsto 456\}, \\
\{Jack \mapsto 123, Jack \mapsto 456, Jill \mapsto 789\}, \{Jack \mapsto 123, Jack \mapsto 789, Jill \mapsto 456\}, \\
\{Jack \mapsto 456, Jack \mapsto 789, Jill \mapsto 123\}, \{Jill \mapsto 123, Jill \mapsto 456, Jack \mapsto 123\}, \\
\{Jill \mapsto 123, Jill \mapsto 456, Jill \mapsto 123\}, \{Jill \mapsto 456, Jill \mapsto 456, Jill \mapsto 789\}, \\
\{Jill \mapsto 123, Jill \mapsto 789, Jill \mapsto 789\}, \{Jill \mapsto 456, Jill \mapsto 789, Jack \mapsto 789\}, \\
\{Jill \mapsto 123, Jill \mapsto 456, Jill \mapsto 789\}, \{Jill \mapsto 123, Jill \mapsto 456, Jill \mapsto 789\}, \\
\{Jill \mapsto 123, Jill \mapsto 456, Jill \mapsto 789\}, \{Jill \mapsto 123, Jill \mapsto 456, Jill \mapsto 789\}, \\
\{Jill \mapsto 123, Jill \mapsto 456, Jill \mapsto 789\}, \{Jill \mapsto 123, Jill \mapsto 456, Jill \mapsto 789\}, \\
\{Jill \mapsto 123, Jill \mapsto 456, Jill \mapsto 789\}, \{Jill \mapsto 123, Jill \mapsto 456, Jill \mapsto 789\}.

c) What is \text{card}(\text{NAMES} \leftrightarrow \text{PHONE})? \text{card}(\text{NAMES} \leftrightarrow \text{PHONE}) = \text{card}(\mathcal{P}(\text{NAMES} \times \text{PHONE})) = 64

12. \text{X} \mapsto \text{Y} is the set of all partial functions formed from \text{X} and \text{Y}.

a) Give \text{NAMES} \mapsto \text{PHONE}.

\text{NAMES} \mapsto \text{PHONE} = \{

\begin{enumerate}
\item[]
\{ \}
\{ Jack \mapsto 123 \}, \{ Jack \mapsto 456 \}, \{ Jack \mapsto 789 \}, \{ Jill \mapsto 123 \}, \{ Jill \mapsto 456 \}, \{ Jill \mapsto 789 \},
\{ Jack \mapsto 123, Jill \mapsto 123 \}, \{ Jack \mapsto 123, Jill \mapsto 456 \}, \{ Jack \mapsto 123, Jill \mapsto 789 \},
\{ Jack \mapsto 456, Jill \mapsto 123 \}, \{ Jack \mapsto 456, Jill \mapsto 456 \}, \{ Jack \mapsto 456, Jill \mapsto 789 \},
\{ Jack \mapsto 789, Jill \mapsto 123 \}, \{ Jack \mapsto 789, Jill \mapsto 456 \}, \{ Jack \mapsto 789, Jill \mapsto 789 \}
\end{enumerate}

b) What is \( \text{card}(\text{NAMES} \mapsto \text{PHONE}) \)? 16

13. \( X \rightarrow Y \) is the set of all total functions formed from \( X \) and \( Y \).

a) Give \( \text{NAMES} \rightarrow \text{PHONE} \).

\[ \text{NAMES} \rightarrow \text{PHONE} = \{
\{ Jack \mapsto 123 \}, \{ Jack \mapsto 456 \}, \{ Jack \mapsto 789 \}, \{ Jill \mapsto 123 \}, \{ Jill \mapsto 456 \}, \{ Jill \mapsto 789 \},
\{ Jack \mapsto 123, Jill \mapsto 123 \}, \{ Jack \mapsto 123, Jill \mapsto 456 \}, \{ Jack \mapsto 123, Jill \mapsto 789 \},
\{ Jack \mapsto 456, Jill \mapsto 123 \}, \{ Jack \mapsto 456, Jill \mapsto 456 \}, \{ Jack \mapsto 456, Jill \mapsto 789 \},
\{ Jack \mapsto 789, Jill \mapsto 123 \}, \{ Jack \mapsto 789, Jill \mapsto 456 \}, \{ Jack \mapsto 789, Jill \mapsto 789 \}
\} \]

b) What is \( \text{card}(\text{NAMES} \mapsto \text{PHONE}) \)? 9 = 3 \times 3

14. \( X \mapsto Y \) is the set of all partial, injective functions formed from \( X \) and \( Y \).

a) Give \( \text{NAMES} \mapsto \mapsto \text{PHONE} \).

\[ \text{NAMES} \mapsto \mapsto \text{PHONE} = \{
\{ \},
\{ Jack \mapsto 123 \}, \{ Jack \mapsto 456 \}, \{ Jack \mapsto 789 \}, \{ Jill \mapsto 123 \}, \{ Jill \mapsto 456 \}, \{ Jill \mapsto 789 \},
\{ Jack \mapsto 123, Jill \mapsto 456 \}, \{ Jack \mapsto 123, Jill \mapsto 789 \},
\{ Jack \mapsto 456, Jill \mapsto 123 \}, \{ Jack \mapsto 456, Jill \mapsto 789 \},
\{ Jack \mapsto 789, Jill \mapsto 123 \}, \{ Jack \mapsto 789, Jill \mapsto 456 \}
\} \]

b) What is \( \text{card}(\text{NAMES} \mapsto \mapsto \text{PHONE}) \)? 13 = 6 + 6 + 1

15. \( X \Rightarrow Y \) is the set of all total, injective functions formed from \( X \) and \( Y \).

a) Give \( \text{NAMES} \Rightarrow \text{PHONE} \).

\[ \text{NAMES} \Rightarrow \text{PHONE} = \{
\{ \},
\{ Jack \mapsto 123 \}, \{ Jack \mapsto 456 \}, \{ Jack \mapsto 789 \}, \{ Jill \mapsto 123 \}, \{ Jill \mapsto 456 \}, \{ Jill \mapsto 789 \},
\{ Jack \mapsto 123, Jill \mapsto 456 \}, \{ Jack \mapsto 123, Jill \mapsto 789 \},
\{ Jack \mapsto 456, Jill \mapsto 123 \}, \{ Jack \mapsto 456, Jill \mapsto 789 \},
\{ Jack \mapsto 789, Jill \mapsto 123 \}, \{ Jack \mapsto 789, Jill \mapsto 456 \}
\} \]

b) What is \( \text{card}(\text{NAMES} \Rightarrow \text{PHONE}) \)? 6

16. \( X \mapsto Y \) is the set of all partial, surjective functions formed from \( X \) and \( Y \).
11.1. RELATIONS AND FUNCTIONS

17. \( X \rightarrow Y \) is the set of all total, surjective functions formed from \( X \) and \( Y \).
   a) Give \( \text{NAMES} \rightarrow \text{PHONE} \).
      \( \text{NAMES} \rightarrow \text{PHONE} = \{\} \)
   b) What is \( \text{card}(\text{NAMES} \rightarrow \text{PHONE})? \) 0

18. \( X \hookrightarrow Y \) is the set of all (total) bijective functions formed from \( X \) and \( Y \).
   a) Give \( \text{NAMES} \hookrightarrow \text{PHONE} \).
      \( \text{NAMES} \hookrightarrow \text{PHONE} = \{\} \)
   b) What is \( \text{card}(\text{NAMES} \hookrightarrow \text{PHONE})? \) 0
   c) Why is a partial bijection unnecessary? A partial bijection \( X \hookrightarrow \rightarrow Y \) can be represented by a total injection \( Y \hookrightarrow \rightarrow X \).

19. This set exercises some important relational operators.
   Given \( \text{phone} = \{\text{Jack} \rightarrow 123, \text{Jack} \rightarrow 789, \text{Jill} \rightarrow 456, \text{Jill} \rightarrow 789\} \)
   a) What is \( \text{dom}(\text{phone})? \) \( \{\text{Jack, Jill}\} \).
   b) What is \( \text{ran}(\text{phone})? \) \( \{123, 456, 789\} \).
   c) What is \( \text{phone} \leftarrow \{\text{Jack} \rightarrow 123\}? \) \( \{\text{Jack} \rightarrow 123, \text{Jill} \rightarrow 456, \text{Jill} \rightarrow 789\} \).
   d) What is \( \text{Jack} \leftarrow \text{phone}? \) \( \{\text{Jack} \rightarrow 123, \text{Jack} \rightarrow 789\} \).
   e) What is \( \text{Jon} \leftarrow \text{phone}? \) \( \{\text{Jill} \rightarrow 456, \text{Jill} \rightarrow 789\} \).
   f) What is \( \text{phone} \downarrow \{123, 789\}? \) \( \{\text{Jack} \rightarrow 123, \text{Jack} \rightarrow 789, \text{Jill} \rightarrow 789\} \).
   g) What is \( \text{phone} \downarrow \{123, 789\}? \) \( \{\text{Jill} \rightarrow 456\} \).
   h) What is \( \text{phone}[[\text{Jack}]]? \) \( \{123, 789\} \).

20. Students pass a subject if they gain at least 50 marks in the final examination. Given a function \( \text{results} : \text{STUDENTS} \rightarrow \mathbb{N} \), that yields the examination result for a particular student, specify
   a) the set of students that pass: \( \text{dom}(\text{results}\uparrow \{\text{n} \mid \text{n} \in \mathbb{N} \land \text{n} \geq 50\}) \)
      \( \{\text{s} \mid \text{s} \in \text{dom}(\text{results}) \land \text{results}(\text{s}) \geq 50\} \)
      or
      \( \text{dom}(\text{results} \downarrow \{\text{n} \mid \text{n} \in \mathbb{N} \land \text{n} \geq 50\}) \)
   b) the set of students that fail.
      \( \{\text{s} \mid \text{s} \in \text{dom}(\text{results}) \land \text{results}(\text{s}) < 50\} \)

21. If we were modelling a taxi fleet company we might have three variables, \( \text{drivers, taxis} \) and \( \text{assigned} \) constrained by
   \[
   \begin{align*}
   \text{drivers} : & \mathbb{P}\text{DRIVERS} \\
   \text{taxis} : & \mathbb{P}\text{TAXIS} \\
   \text{assigned} : & \text{drivers} \mapsto \rightarrow \text{taxis}
   \end{align*}
   \]
   where \( \text{drivers} \) is the set of drivers working for the company, \( \text{taxis} \) is the set of taxis owned by the company, and \( \text{assigned} \) is a function recording the assignment of drivers to taxis.

   The arrow \( \mapsto \rightarrow \) denotes a partial injective function. An injective function is a one-to-one function. Notice that the inverse of an injective function is also an injective function. In general, of course, the inverse of a function is not necessarily even a function.
 CHAPTER 11. SOLUTIONS

a) Why is assigned a function? It is a function because a driver would be assigned to at most one taxi.

b) Why is assigned a partial function?
   It is partial because at any time not all drivers would necessarily be assigned to a taxi.

c) Why is assigned an injective function?
   It is injective because a taxi would be assigned to at most one driver.

d) Specify the drivers who are currently assigned.
   \( \text{dom}(\text{assigned}) \)

e) Specify the drivers who are currently unassigned.
   \( \text{drivers} - \text{dom}(\text{assigned}) \)

f) Specify the taxis that are currently assigned.
   \( \text{ran}(\text{assigned}) \)

g) Specify the taxis that are currently unassigned.
   \( \text{taxis} - \text{ran}(\text{assigned}) \)

22. Are the following rules correct or incorrect?

   a) \( f \in X \to Y \Rightarrow f \in X \mapsto Y \)
      Correct, a total function is a partial function.

   b) \( f \in X \mapsto Y \Rightarrow f \in X \mapsto Y \)
      Correct, a partial injection is a partial function.

   c) \( f \in X \mapsto Y \Rightarrow f \in X \to Y \)
      Incorrect, a partial injection is not a total function.

   d) \( f \in X \mapsto Y \Rightarrow f \in X \to Y \)
      Correct, a total injection is a total function.

   e) \( f \in X \mapsto Y \Rightarrow f \in X \to Y \)
      Correct, a total injection is a partial function.

   f) \( f \in X \to Y \Rightarrow f \in X \to Y \)
      Correct, a partial surjection is a partial function.

   g) \( f \in X \to Y \Rightarrow f \in X \to Y \)
      Incorrect, a partial surjection is not a total function.

   h) \( f \in X \to Y \Rightarrow f \in X \to Y \)
      Correct, a total surjection is a total function.

   i) \( f \in X \to Y \Rightarrow f \in X \to Y \)
      Correct, a total surjection is a partial function.

   j) \( f \in X \to Y \Rightarrow \text{dom}(f) \subset X \)
      Incorrect.

   k) \( f \in X \to Y \Rightarrow \text{ran}(f) = Y \)
      Incorrect.

   l) \( f \in X \to Y \land x \in \text{dom}(f) \Rightarrow f([x]) = \{f(x)\} \)
      Correct.

   m) \( (r^{-1})^{-1} = r \)
      Correct.

   n) \( r \in X \leftrightarrow Y \Rightarrow \text{dom}(r^{-1}) = \text{ran}(r) \)
      Correct.

   o) \( r \in X \leftrightarrow Y \Rightarrow \text{ran}(r^{-1}) = \text{dom}(r) \)
      Correct.
11.1. RELATIONS AND FUNCTIONS

p) \( r \in X \leftrightarrow Y \Rightarrow \text{ran}(r) \in Y \)
   Incorrect.
q) \( r \in X \leftrightarrow Y \Rightarrow \text{ran}(r) \subseteq Y \)
   Correct.
r) \( r \in X \leftrightarrow Y \Rightarrow \text{ran}(r) \in \mathcal{P}(Y) \)
   Correct.

23. The generalized union of a set of subsets of \( X \) contains those elements of \( X \) that are in at least one of the subsets. Define a function \( \text{union} : \mathcal{P} \mathcal{P} X \to \mathcal{P} X \) that maps a set of subsets of \( X \) to its generalized union. What is \( \text{union} \emptyset \)?

   a) \( \text{union}(U) = \{ x : X | \exists u \cdot (u \in U \land x \in u) \} \)

   b) \( \text{union}(\emptyset) = \{ x : X | \forall u \cdot (u \in \emptyset \land x \in u) \} \)
   \( = \{ x : X | \emptyset \} \)
   \( = \emptyset \)

To shed a bit more light on this, it is clear that \( \text{union}\{x\} = \{x\} \) for any \( x \in X \). But, \( \text{union}\{x\} = \text{union}\{x, \emptyset\} = \text{union}\{x\} \cup \text{union}\emptyset \). It follows that \( \text{union}\emptyset \) must be the empty set.

24. The generalized intersection of a set of subsets of \( X \) contains just those elements of \( X \) that are in all the subsets. Define a function \( \text{inter} : \mathcal{P} \mathcal{P} X \to \mathcal{P} X \) that maps a set of subsets of \( X \) to its generalized intersection. What is \( \text{inter} \emptyset \)?

   a) \( \text{inter} U = \{ x : X | \forall u \cdot (u \in U \Rightarrow x \in u) \} \)

   b) \( \text{inter} \emptyset = \{ x : X | \forall u \cdot (u \in \emptyset \Rightarrow x \in u) \} \)
   \( = \{ x : X | \top \} \)
   \( = X \)

To shed a bit more light on \( \text{inter}\emptyset \), it is clear that \( \text{inter}\{x\} = \{x\} \). Now consider \( \text{inter}(P, \{x\}) \), where \( P \) is a list of sets. Then, \( \text{inter}(P, \{x\}) = \text{inter}(P) \cap \{x\} \). Now take the case where the list \( P \) is empty, \( \{x\} = \text{inter}\emptyset \cap \{x\} \) for all \( x \in X \). Therefore, \( \text{inter}\emptyset \) must be \( X \).

25. Two subsets of a set \( X \) are said to be disjoint if and only if they have no elements in common. Define a binary relation \( \text{disjoint} \) that holds between a pair of subsets of \( X \) exactly when they are disjoint.

   \( \text{disjoint}(u, w) = u \cap w = \emptyset \)

26. A set of subsets of \( X \) is said to be pairwise disjoint if and only if every pair of distinct sets in it is disjoint (in the sense of (c)). A partition of a set \( X \) is a pairwise disjoint set of subsets of \( X \) whose generalized union is equal to \( X \).

   a) Define the set of all partitions of \( X \).
   \( \text{partition} X = \{ w : X \land \text{union}(w) = X \land \forall(u1, u2) \cdot (u1 \in w \land u2 \in w \Rightarrow u1 \neq u2) \land \text{disjoint}(u1, u2) \} \)

   b) Which of the subsets of \( \{a, b\} \) are partitions of \( \{a, b\} \)?
   \( \{\emptyset, \{a\}, \{b\}\}, \{\{a, b\}\}, \{\emptyset, \{a, b\}\} \).
Appendix A

Models

A.1 Coffee Club

MACHINE CoffeeClub

VARIABLES
piggybank denotes a supply of money for the coffee club.

INVARIANTS
inv1: piggybank ∈ \mathbb{N} piggybank must be a natural number, that is, a non-zero integer

EVENTS

Initialisation \triangleq
THEN
act1: piggybank := 0
END

FeedBank \triangleq
ANY
amount
WHERE
grd1: amount ∈ \mathbb{N}_1
THEN
act1: piggybank := piggybank + amount
END

RobBank \triangleq
ANY
amount
WHERE
grd1: amount ∈ \mathbb{N}_1
grd2: amount ≤ piggybank There must be enough in the piggybank
THEN
act1: piggybank := piggybank − amount
END
END CoffeeClub

CONTEXT MembersContext
SETS MEMBER
AXIOMS
axm1: finite(MEMBER)
END

MACHINE MemberShip
REFINES CoffeeClub
SEES MemberShip

VARIABLES
piggybank
members
accounts
coffeeprice

INVARIANTS
inv1: piggybank ∈ N
inv2: members ⊆ MEMBER  each member has unique id
inv3: accounts ∈ members → N  each member has an account
inv4: coffeeprice ∈ N1  price of a cup of coffee

EVENTS
Initialisation : extended ⊆
THEN
act2: members := ∅  empty set of members
act3: accounts := ∅  empty set of accounts
act4: coffeeprice := 1  initial coffee price set to arbitrary non-zero value
END

SetPrice ⊆
ANY
WHERE
amount
grd1: amount ∈ N1
THEN
act1: coffeeprice := amount
END

NewMember ⊆
ANY
member
A.1. **COFFEE CLUB**

**Contribute** \(\cong\)

\[\text{ANY} \quad \text{amount} \quad \text{member}\]

**WHERE**
- **grd1:** \(\text{amount} \in \mathbb{N}_1\)
- **grd2:** \(\text{member} \in \text{members}\)

**THEN**
- **act1:** \(\text{accounts}(\text{member}) := \text{accounts}(\text{member}) + \text{amount}\)
- **act2:** \(\text{piggybank} := \text{piggybank} + \text{amount}\)

**End**

**BuyCoffee** \(\cong\)

\[\text{ANY} \quad \text{member}\]

**WHERE**
- **grd1:** \(\text{member} \in \text{members}\)
- **grd2:** \(\text{accounts}(\text{member}) \geq \text{coffeeprice}\)

**THEN**
- **act1:** \(\text{accounts}(\text{member}) := \text{accounts}(\text{member}) - \text{coffeeprice}\)

**End**

**FeedBank:** \(\text{extended} \cong\)

**REFINES**
- FeedBank

\[\text{ANY}\]

**WHERE**

**THEN**

**End**

**RobBank:** \(\text{extended} \cong\)

**REFINES**
- RobBank

\[\text{ANY}\]

**WHERE**

**THEN**

**End**
**END Membership**
A.2 SquareRoot

CONTEXT SquareRoot_ctx
CONSTANTS
num
AXIOMS
axm1: \( num \in \mathbb{N} \)
END

MACHINE SquareRoot
SEES
SquareRoot_ctx
VARIABLES
sqrt
INVARIANTS
inv1: \( sqrt \in \mathbb{N} \)
EVENTS
Initialisation \( \triangleq \)
THEN
act1: \( sqrt \in \mathbb{N} \)
END
SquareRoot \( \triangleq \)
THEN
\[ sqrt : | (sqrt' \in \mathbb{N} \land sqrt' \cdot sqrt' \leq num \land num < (sqrt' + 1) \cdot (sqrt' + 1)) \]
END
END SquareRoot

MACHINE SquareRootR1
REFINES
SquareRoot
SEES
SquareRoot_ctx
VARIABLES
sqrt
low
high
INVARIANTS
inv1: \( low \in \mathbb{N} \)
inv2: \( high \in \mathbb{N} \)
inv3: \( low + 1 \leq high \)
inv4: \( low \cdot low \leq num \)
inv5: \( low < high \cdot high \)
VARIANT
high \(-\) low
EVENTS
Initialisation \( \triangleq \)
THEN
APPENDIX A. MODELS

\begin{align*}
\text{act1:} & \quad \sqrt{\cdot} \in \mathbb{N} \\
\text{act2:} & \quad \text{low} : \text{low}' \in \mathbb{N} \land \text{low}' \leq \text{num} \\
\text{act3:} & \quad \text{high} : \text{high}' \in \mathbb{N} \land \text{num} < \text{high}' \times \text{high}'
\end{align*}

END

\textbf{SquareRoot} \triangleq

\textbf{REFINES}

\textbf{SquareRoot}

\textbf{WHERE}

\begin{align*}
\text{grd1:} & \quad \text{low} + 1 = \text{high} \\
\text{THEN}
\end{align*}

\begin{align*}
\text{act1:} & \quad \sqrt{\cdot} := \text{low}
\end{align*}

END

\textbf{Improve} \triangleq

\textbf{STATUS} \quad \text{convergent}

\textbf{ANY}

\begin{align*}
\text{h} \\
\text{WHERE}
\end{align*}

\begin{align*}
\text{grd1:} & \quad \text{low} + 1 \neq \text{high} \\
\text{grd2:} & \quad \text{l} \in \mathbb{N} \land \text{low} \leq \text{l} \land \text{l} \times \text{l} \leq \text{num} \\
\text{grd3:} & \quad \text{h} \in \mathbb{N} \land \text{h} \leq \text{high} \land \text{num} < \text{h} \times \text{h} \\
\text{grd4:} & \quad \text{l} + 1 \leq \text{h} \\
\text{grd5:} & \quad \text{h} - 1 < \text{high} - \text{low}
\end{align*}

\textbf{THEN}

\begin{align*}
\text{act1:} & \quad \text{low}, \text{high} := \text{l}, \text{h}
\end{align*}

END

END \textbf{SquareRootR1}

\textbf{MACHINE} \textbf{SquareRootR2}

\textbf{REFINES}

\textbf{SquareRootR1}

\textbf{SEES}

\textbf{SquareRoot\_ctx}

\textbf{VARIABLES}

\begin{align*}
\text{sgrt} \\
\text{low} \\
\text{high}
\end{align*}

\textbf{INVARIANTS}

\begin{align*}
\text{inv1:} & \quad \text{low} \in \mathbb{N} \\
\text{inv2:} & \quad \text{high} \in \mathbb{N} \\
\text{inv3:} & \quad \text{low} + 1 \leq \text{high} \\
\text{inv4:} & \quad \text{low} \times \text{low} \leq \text{num} \\
\text{inv5:} & \quad \text{low} < \text{high} \times \text{high}
\end{align*}

\textbf{VARIANT}

\text{high} - \text{low}

\textbf{EVENTS}

\textbf{Initialisation} : \textit{extended} \triangleq

\textbf{THEN}

\textbf{END}
SquareRoot : extended $\cong$

REFINES
SquareRoot

WHERE

THEN

END

Improve1 $\cong$

REFINES
Improve

ANY

m

WHERE

grd1: $low + 1 \neq high$
grd2: $m \in \mathbb{N}$
grd3: $low < m \land m < high$
grd4: $m \times m \leq num$

m is a better value for low

WITH

l: $l = m$
h: $h = high$

THEN

act1: $low := m$

END

Improve2 $\cong$

REFINES
Improve

ANY

m

WHERE

grd1: $low + 1 \neq high$
grd2: $m \in \mathbb{N}$
grd3: $low < m \land m < high$
grd4: $m \times m > num$

m is a better value for high

WITH

l: $l = low$
h: $h = m$

THEN

act1: $high := m$

END

END SquareRootR2

MACHINE SquareRootR3

REFINES
SquareRootR2

SEES
SquareRoot_ctx

VARIABLES
APPENDIX A. MODELS

sqrt
low
high
INvariants

thm1: \( (\forall n \in \mathbb{N} \Rightarrow (\exists m \in \mathbb{N} \land (n = 2 \times m \lor n = 2 \times m + 1))) \)  n is even or odd

thm2: \( (\forall n \in \mathbb{N} \Rightarrow n < n + 1 \times (n + 1)) \)

VARIANT

high – low

EVENTS

initialisation: extended \( \cong \)

THEN

END

\textbf{SquareRoot : extended} \( \cong \)

REFINES

\textbf{SquareRoot}

WHERE

THEN

END

\textbf{Improve1} \( \cong \)

REFINES

\textbf{Improve}

ANY

\( m \)

WHERE

\( \text{grd1: low + 1 \neq high} \)

\( \text{grd2: } m = (low + high)/2 \)

\( \text{grd3: } m \times m \leq \text{num} \) \( m \) is a better value for low

THEN

\( \text{act1: low := m} \)

END

\textbf{Improve2} \( \cong \)

REFINES

\textbf{Improve}

ANY

\( m \)

WHERE

\( \text{grd1: low + 1 \neq high} \)

\( \text{grd2: } m = (low + high)/2 \)

\( \text{grd3: } (m \times m > \text{num}) \) \( m \) is a better value for high

THEN

\( \text{act1: high := m} \)

END

END \textbf{SquareRootR3}

\textbf{MACHINE} \textbf{SquareRootR4}
A.2. SQUAREROOT

REFINES
SquareRootR3

SEES
SquareRoot_ctx

VARIABLES
sqrt
low
high
mid

INvariants
inv1: low ∈ N
inv2: high ∈ N
inv3: low + 1 ≤ high
inv4: low * low ≤ num
inv5: num < high * high
inv6: mid = (low + high)/2

VARIANT
high - low

EVENTS
Initialisation ≡
THEN
act1: sqrt ∈ N
act2: low := 0
act3: high := num + 1
act4: mid := (num + 1)/2
END

SquareRoot ≡
REFINES
SquareRoot
WHERE
grd1: low + 1 = high
THEN
act1: sqrt := low
END

Improve1 ≡
REFINES
Improve
ANY
WHERE
grd1: low + 1 ≠ high
grd2: mid * mid ≤ num mid is a better value for low
WITH
m: m = mid
THEN
act1: low := mid
act2: mid := (mid + high)/2
END

Improve2 ≡
REFINES
Improve
ANY

WHERE
  grd1: low + 1 \neq high
  grd2: (mid * mid > num)  mid is a better value for high
WITH
  m:  m = mid
THEN
  act1: high := mid
  act2: mid := (low + mid)/2
END

END SquareRoot4
Appendix B

Proof Obligations

All proof obligations have a name and an abbreviation:

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>Needed to discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>INV</td>
<td>Invariant</td>
<td></td>
</tr>
<tr>
<td>FIS</td>
<td>Feasibility</td>
<td></td>
</tr>
<tr>
<td>WD</td>
<td>Well-definedness</td>
<td></td>
</tr>
<tr>
<td>GRD</td>
<td>Guard</td>
<td></td>
</tr>
<tr>
<td>EQL</td>
<td>Equal</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C

Event-B Concise Summary

Each construct will be given in its presentation form, as displayed in the Rodin toolkit, followed by the ASCII form that is used for input to Rodin.

In the following: \( P \), \( Q \) and \( R \) denote predicates; \( x \) and \( y \) denote single variables; \( z \) denotes a single or comma-separated list of variables; \( p \) denotes a pattern of variables, possibly including \( \rightarrow \) and parentheses; \( S \) and \( T \) denote set expressions; \( U \) denotes a set of sets; \( m \) and \( n \) denote integer expressions; \( f \) and \( g \) denote functions; \( r \) denotes a relation; \( E \) and \( F \) denote expressions; \( E, F \) is a recursive pattern, i.e. it matches \( e_1, e_2 \) and also \( e_1, e_2, e_3 \ldots \); similarly for \( x, y \).

Freeness: The meta-predicate \( \neg \)free\( (z, E) \) means that none of the variables in \( z \) occur free in \( E \). This meta-predicate is defined recursively on the structure of \( E \), but that will not be done here explicitly. The base cases are: \( \neg \)free\( (z, \forall z \cdot P \Rightarrow Q) \), \( \neg \)free\( (z, \exists z \cdot P \land Q) \), \( \neg \)free\( (z, \{ z \cdot P \mid F \}) \), \( \neg \)free\( (z, \lambda z \cdot P[E]) \), and \( \)free\( (z, z) \).

In the following the statement that \( P \) must constrain \( z \) means that the type of \( z \) must be at least inferrable from \( P \).

In the following, parentheses are used to show syntactic structure; they may of course be omitted when there is no confusion.

Note: Event-B has a formal syntax and this summary does not attempt to describe that syntax. What it attempts to do is to explain Event-B constructs. Some words like expression collide with the formal syntax. Where a syntactical entity is intended the word will appear in italics, e.g. expression, predicate.

The base cases are: \( \neg \)free\( (z, (\forall z \cdot P) \) , \( \neg \)free\( (z, (\exists z \cdot P) \) , \( \neg \)free\( (z, \{ z \cdot P \mid F \}) \) , \( \neg \)free\( (z, \lambda z \cdot P[E]) \) , and \( \)free\( (z, z) \).

In the following:

- the statement “\( P \) must constrain \( z \)” means that the type of \( z \) must be at least inferrable from \( P \).
- parentheses are used to show syntactic structure; they may of course be omitted when there is no confusion.
### C.1 Predicates

1. **False** : \( \bot \)  
   
   ```
 false
   ```

2. **True** : \( \top \)  
   
   ```
 true
   ```

3. **Conjunction** : \( P \land Q \)  
   Left associative.  
   
   ```
 P \& Q
   ```

4. **Disjunction** : \( P \lor Q \)  
   Left associative.  
   
   ```
 P \text{ or } Q
   ```

5. **Implication** : \( P \Rightarrow Q \)  
   Non-associative: this means that \( P \Rightarrow Q \Rightarrow R \) must be parenthesised or an error will be diagnosed.  
   
   ```
 P \Rightarrow Q
   ```

6. **Equivalence** : \( P \Leftrightarrow Q \)  
   \( P \Leftarrow\Rightarrow Q = P \Rightarrow Q \land Q \Rightarrow P \)  
   Non-associative: this means that \( P \Leftrightarrow Q \Leftrightarrow R \) must be parenthesised or an error will be diagnosed.  
   
   ```
 P \leftrightarrow Q
   ```

7. **Negation** : \( \neg P \)  
   
   ```
 \text{not } P
   ```

8. **Universal quantification** : \((\forall z. P \Rightarrow Q)\)  
   Strictly, \(\forall z. P\), but usually an implication.  
   For all values of \( z \), satisfying \( P \), \( Q \) is satisfied.  
   The types of \( z \) must be inferrable from the predicate \( P \).  
   
   ```
 (\forall z. P \Rightarrow Q)
   ```

9. **Existential quantification** : \((\exists z. P \land Q)\)  
   Strictly, \(\exists z. P\), but usually a conjunction.  
   There exist values of \( z \), satisfying \( P \), that satisfy \( Q \).  
   The predicate \( P \) must be inferrable from the predicate \( P \).  
   
   ```
 (\exists z. P \land Q)
   ```

10. **Equality** : \( E = F \)  

11. **Inequality** : \( E \neq F \)  

### C.2 Sets

1. **Singleton set** : \( \{E\} \)  
   
   ```
 \{E\}
   ```

2. **Set enumeration** : \( \{E, F\} \)  
   See note on the pattern \( E, F \) at top of summary.  
   
   ```
 \{E, F\}
   ```

3. **Empty set** : \( \varnothing \)  
   
   ```
 \varnothing
   ```

4. **Set comprehension** : \( \{z. P \mid F\} \)  
   General form: the set of all values of \( z \) that satisfy the predicate \( P \). \( P \) must constrain the variables in \( z \).  
   
   ```
 \{z. P \mid F\}
   ```

5. **Set comprehension** : \( \{F \mid P\} \)  
   Special form: the set of all values of \( F \) that satisfy the predicate \( P \). In this case the set of bound variables \( z \) are all the free variables in \( F \).  
   
   ```
 \{F \mid P\}
   ```

6. **Set comprehension** : \( \{x \mid P\} \)  
   A special case of item 5: the set of all values of \( x \) that satisfy the predicate \( P \).  
   
   ```
 \{x \mid P\}
   ```

7. **Union** : \( S \cup T \)  
   
   ```
 S \cup T
   ```

8. **Intersection** : \( S \cap T \)  
   
   ```
 S \cap T
   ```

9. **Difference** : \( S \setminus T \)  
   \( S \setminus T = \{x \mid x \in S \land x \notin T\} \)  
   
   ```
 S \setminus T
   ```

10. **Ordered pair** : \( E \mapsto F \)  
    \( E \mapsto F \neq (E, F) \)  
    Left associative.  
    In all places where an ordered pair is required, \( E \mapsto F \) must be used. \( E, F \) will not be accepted as an ordered pair, it is always a list. \( \{x, y \mid P \mid x \mapsto y\} \) illustrates the different usage.  
    
    ```
 E \mapsto F
    ```

11. **Cartesian product** : \( S \times T \)  
    \( S \times T = \{x \mapsto y \mid x \in S \land y \in T\} \)  
    Left-associative.  
    
    ```
 S \times T
    ```

12. **Powerset** : \( \mathcal{P}(S) \)  
    \( \mathcal{P}(S) = \{s \mid s \subseteq S\} \)  
    
    ```
 \mathcal{P}(S)
    ```

13. **Non-empty subsets** : \( \mathcal{P}_1(S) \)  
    \( \mathcal{P}_1(S) = \mathcal{P}(S)\setminus\{\varnothing\} \)  
    
    ```
 \mathcal{P}_1(S)
    ```

14. **Cardinality** : \( \text{card}(S) \)  
    Defined only for finite \( S \).  
    
    ```
 \text{card}(S)
    ```

15. **Generalized union** : \( \text{union}(U) \)  
    The union of all the elements of \( U \).  
    \( \forall U \cdot U \in \mathcal{P}(\mathcal{P}(S)) \Rightarrow \text{union}(U) = \{x \mid x \in S \land \exists s \cdot s \in U \land x \in s\} \)  
    where \( \neg\text{free}(x, s, U) \)
C.3. **BOOL and BOOL**

16. **Generalized intersection**: \( \text{inter}(U) \)

The intersection of all the elements of \( U \).

\[ \forall U \subseteq P(S) \Rightarrow \text{inter}(U) = \{ x \mid x \in S \land \forall s \in U \Rightarrow x \in s \} \]

where \( \neg \text{free}(x, s, U) \)

17. **Quantified union**: \( \text{UNION z.P} \mid S \)

\( P \) must constrain the variables in \( z \).

\[ \forall z \mid P \Rightarrow S \subseteq T \Rightarrow \cup(z \mid P \mid E) = \{ x \mid x \in T \land \exists z \mid P \land x \in S \} \]

where \( \neg \text{free}(x, z, T) \land \neg \text{free}(x, P) \land \neg \text{free}(x, S) \)

18. **Quantified intersection**: \( \text{INTER z.P} \mid S \)

\( P \) must constrain the variables in \( z \).

\[ \forall z \mid P \Rightarrow S \subseteq T \Rightarrow \cap(z \mid P \mid S) = \{ x \mid x \in T \land \forall z \mid P \Rightarrow x \notin S \} \]

where \( \neg \text{free}(x, z, S) \land \neg \text{free}(x, P) \land \neg \text{free}(x, S) \)

### Set predicates

1. **Set membership**: \( E \in S \)

\[ E : S \]

2. **Set non-membership**: \( E \notin S \)

\[ E /: S \]

3. **Subset**: \( S \subseteq T \)

\[ S :<: T \]

4. **Not a subset**: \( S \nsubseteq T \)

\[ S /:<: T \]

5. **Proper subset**: \( S \subset T \)

\[ S <<=: T \]

6. **Not a proper subset**: \( s \nsubseteq t \)

\[ S /:/=: T \]

7. **Finite set**: \( \text{finite}(S) \)

\[ \text{finite}(S) \Rightarrow S \text{ is finite.} \]

8. **Partition**: \( \text{partition}(S, x, y) \)

\( x \) and \( y \) partition the set \( S \), ie \( S = x \cup y \land x \cap y = \emptyset \)

Specialised use for enumerated sets: \( \text{partition}(S, \{A\}, \{B\}, \{C\}) \).

\[ S = \{A, B, C\} \land A \neq B \land B \neq C \land C \neq A \]

### Number predicates

8. **Partition**: \( \text{partition}(S, x, y) \)

\( x \) and \( y \) partition the set \( S \), ie \( S = x \cup y \land x \cap y = \emptyset \)

Specialised use for enumerated sets: \( \text{partition}(S, \{A\}, \{B\}, \{C\}) \).

\[ S = \{A, B, C\} \land A \neq B \land B \neq C \land C \neq A \]

9. **Greater**: \( m > n \)

10. **Less**: \( m < n \)

11. **Greater or equal**: \( m \geq n \)

12. **Less or equal**: \( m \leq n \)

### C.3 BOOL and bool

**BOOL** is the enumerated set: \{FALSE,TRUE\}, and **bool** is defined on a predicate \( P \) as follows:

1. \( P \) is provable: \( \text{bool}(P) = \text{TRUE} \)
2. \( \neg P \) is provable: \( \text{bool}(P) = \text{FALSE} \)

### C.4 Numbers

The following is based on the set of integers, the set of natural numbers (non-negative integers), and the set of positive (non-zero) natural numbers.

1. **The set of integer numbers**: \( \mathbb{Z} \)

2. **The set of natural numbers**: \( \mathbb{N} \)

3. **The set of positive natural numbers**: \( \mathbb{N}^+ \)

4. **Minimum** \( \text{min}(S) \)

\( S \subseteq \mathbb{Z} \) and \( \text{finite}(S) \) or \( S \) must have a lower bound.

5. **Maximum** \( \text{max}(S) \)

\( S \subseteq \mathbb{Z} \) and \( \text{finite}(S) \) or \( S \) must have an upper bound.

6. **Sum** \( m + n \)

7. **Difference** \( m - n \)

\[ n \leq m \]

8. **Product** \( m \times n \)

9. **Quotient** \( m / n \)

\[ n \neq 0 \]

10. **Remainder** \( m \mod n \)

\[ n \neq 0 \]

11. **Interval** \( m..n \)

\[ m..n = \{ i \mid m \leq i \land i \leq n \} \]

### Number predicates

1. **Greater**: \( m > n \)

2. **Less**: \( m < n \)

3. **Greater or equal**: \( m \geq n \)

4. **Less or equal**: \( m \leq n \)
C.5 Relations

A relation is a set of ordered pairs; a many to many mapping.

1. Relations $S \leftrightarrow T$
   \[ S \leftrightarrow T \equiv \mathcal{P}(S \times T) \]
   
   Associativity: relations are right associative:
   \[ r \circ (X \leftrightarrow Y \leftrightarrow Z) = r \in X \leftrightarrow (Y \leftrightarrow Z). \]

2. Domain $\text{dom}(r)$
   \[ \forall r \cdot r \in S \leftrightarrow T \Rightarrow \text{dom}(r) = \{x \mid (\exists y \cdot x \mapsto y \in r)\} \]

3. Range $\text{ran}(r)$
   \[ \forall r \cdot r \in S \leftrightarrow T \Rightarrow \text{ran}(r) = \{y \mid (\exists x \cdot x \mapsto y \in r)\} \]

4. Total relation $S \leftrightarrow T$
   if $r \in S \leftrightarrow T$ then $\text{dom}(r) = S$

5. Surjective relation $S \leftrightarrow T$
   if $r \in S \leftrightarrow T$ then $\text{ran}(r) = T$

6. Total surjective relation $S \leftrightarrow T$
   if $r \in S \leftrightarrow T$ then $\text{dom}(r) = S$ and $\text{ran}(r) = T$

7. Forward composition $p ; q$
   \[ \forall p,q,p \in S \leftrightarrow T \land q \in T \leftrightarrow U \Rightarrow p ; q = \{x \mapsto y \mid (\exists z \cdot x \mapsto z \in p \land z \mapsto y \in q)\} \]

8. Backward composition $p \circ q$
   $p \circ q = q ; p$

9. Identity $\text{id}$
   \[ S \triangleq \text{id} = \{x \mapsto x \mid x \in S\}. \]
   
   $\text{id}$ is generic and the set $S$ is inferred from the context.

10. Domain restriction $S \triangleleft r$
    \[ S \triangleleft r = \{x \mapsto y \mid x \mapsto y \in r \land x \in S\}. \]

11. Domain subtraction $S \setminus r$
    \[ S \setminus r = \{x \mapsto y \mid x \mapsto y \in r \land x \notin S\}. \]

12. Range restriction $r \triangleright T$
    \[ r \triangleright T = \{x \mapsto y \mid x \mapsto y \in r \land y \in T\}. \]

13. Range subtraction $r \setminus T$
    \[ r \setminus T = \{x \mapsto y \mid x \mapsto y \in r \land y \notin T\}. \]

14. Inverse $r^{-1}$
    \[ r^{-1} = \{y \mapsto x \mid x \mapsto y \in r\}. \]

15. Relational image $r[S]$
    \[ r[S] = \{y \mid \exists x \cdot x \in S \land x \mapsto y \in r\}. \]

16. Overriding $r_1 \triangleright r_2$
    \[ r_1 \triangleright r_2 = r_2 \cup (\text{dom}(r_2) \triangleright r_1). \]

17. Direct product $p \circ q$
    \[ p \circ q = \{x \mapsto (y \mapsto z) \mid x \mapsto y \in p \land x \mapsto z \in q\}. \]

18. Parallel product $p \parallel q$
    \[ p \parallel q = \{x, y, m, n \cdot x \mapsto m \in p \land y \mapsto n \in q \mid (x \mapsto y) \mapsto (m \mapsto n)\}. \]

19. Projection $\text{prj}_1$
    \[ \text{prj}_1 \text{ is generic.} \]
    \[ (S \times T) \triangleright \text{prj}_1 = \{(x \mapsto y) \mapsto x \mid x \mapsto y \in S \times T\}. \]

20. Projection $\text{prj}_2$
    \[ \text{prj}_2 \text{ is generic.} \]
    \[ (S \times T) \triangleright \text{prj}_2 = \{(x \mapsto y) \mapsto y \mid x \mapsto y \in S \times T\}. \]

### Iteration and Closure

Iteration and closure are important functions on relations that are not currently part of the kernel Event-B language. They can be defined in a Context, but not polymorphically.

Note: iteration and irreflexive closure will be implemented in a proposed extension of the mathematical language. The operators will be non-associative.

1. Iteration $r^n$
   \[ r^n \in S \leftrightarrow S \Rightarrow r_0 = S \triangleleft \text{id} \land r^{n+1} = r ; r^n. \]
   
   Note: to avoid inconsistency $S$ should be the finite base set for $r$, ie the smallest set for which all $r \in S \leftrightarrow S$.

   Could be defined as a function $\text{iterate}(r \mapsto n)$.

2. Reflexive Closure $r^*$
   \[ r^* = \cup n \cdot n \in \mathbb{N} \mid r^n. \]

   Could be defined as a function $\text{rclosure}(r)$.

   Note: $r^0 \subseteq r^*$.

3. Irreflexive Closure $r^+$
   \[ r^+ = \cup n \cdot n \in \mathbb{N}_1 \mid r^n. \]

   Could be defined as a function $\text{idclosure}(r)$.

   Note: $r^0 \not\subseteq r^+$ by default, but may be present depending on $r$. 
Functions

A function is a relation with the restriction that each element of the domain is related to a unique element in the range; a many to one mapping.

1. Partial functions \( S \mapsto T \)
   \[ S \mapsto T = \{ r \cdot r \in S \leftrightarrow T \wedge r^{-1} \subseteq T \cap \text{id} \}. \]

2. Total functions \( S \to T \)
   \[ S \to T = \{ f \cdot f \in S \to T \wedge \text{dom}(f) = S \}. \]

3. Partial injections \( S \mapsto \inj T \)
   \[ S \mapsto \inj T = \{ f \cdot f \in S \mapsto T \wedge f^{-1} \mapsto \subseteq T \wedge \text{dom}(f) = S \}. \]

4. Total injections \( S \inj \to T \)
   \[ S \inj \to T = S \mapsto T \cap S \to T. \]

5. Partial surjections \( S \mapsto \surj T \)
   \[ S \mapsto \surj T = \{ f \cdot f \in S \mapsto T \wedge \text{ran}(f) = T \}. \]

6. Total surjections \( S \surj \to T \)
   \[ S \surj \to T = S \mapsto T \cap S \to T. \]

7. Bijections \( S \inj \surj \to T \)
   \[ S \inj \surj \to T = S \to T \cap S \to T. \]

8. Lambda abstraction
   \[ (\lambda p \cdot P | E) \]
   \[ P \text{ must constrain the variables in } p. \]
   \[ (\lambda p \cdot P | E) = \{ z \cdot P \mid p \to E \}, \text{ where } z \text{ is a} \]
   \[ \text{list of variables that appear in the pattern } p. \]

9. Function application \( f(E) \)
   \[ f(E) \text{ is never valid.} \]

C.6 Models

1. Contexts contain sets and constants used by other contexts or machines.

```plaintext
CONTEXT Identifier
EXTENDS Machine_Identifiers
SETS Identifiers
CONSTANTS Identifiers
AXIOMS Predicates
THEOREMS Predicates
END
```

2. Machines contain events.

```plaintext
MACHINE Identifier
REFINES Machine_Identifiers
SEES Context_Identifiers
VARIABLES Identifiers
INVARIANT Predicates
THEOREMS Predicates
VARIANT Expression
EVENTS Events
END
```

Events

```plaintext
Event_name
REFINES Event_identifiers
ANY Identifiers
WHERE Predicates
WITH Witnesses
THEN Actions
END
```

Theorem: There is one distinguished event named \( \text{INITIALISATION} \) used to initialise the variables of a machine, thus establishing the invariant.

Actions

Actions are used to change the state of a machine. There may be multiple actions, but they take effect concurrently, that is, in parallel. The semantics of events are defined in terms of substitutions. The substitution \([G]P\) defines a predicate obtained by replacing the values of the variables in \( P \) according to the action \( G \). General substitutions are not available in the Event-B language.

**Note on concurrency:** any single variable can be modified in at most one action, otherwise the effect of the actions would, in general, be inconsistent.

1. **skip**, the null action
   
   `skip` denotes the empty set of actions for an event.
2. Simple assignment action \( x := E \) \( x := E \) := “becomes equal to”: replace free occurrences of \( x \) by \( E \).

3. Choice from set \( x \in S \) \( x :: S \) \( x \in S \) := “becomes in”: arbitrarily choose a value from the set \( S \).

4. Choice by predicate \( z :| P \) \( z ::| P \) \( z :| P \) := “becomes such that”: arbitrarily choose values for the variable in \( z \) that satisfy the predicate \( P \). Within \( P \), \( x \) refers to the value of the variable \( x \) before the action and \( x' \) refers to the value of the variable after the action.

5. Functional override \( f(x) := E \) \( f(x) := E \) \( f(x) := E \) Substitute the value \( E \) for the expression \( f \) at point \( x \).
This is a shorthand:
\( f(x) := E = f := f \iff \{ x \mapsto E \} \).

6. Multiple action \( x,y := E,F \) \( x,y := E,F \) \( x,y := E,F \) Concurrent assignment of the values \( E \) and \( F \) to the variables \( x \) and \( y \), respectively. This is equivalent multiple single actions.

Acknowledgement: Jean-Raymond Abrial, Laurent Voisin and Ian Hayes have all given valuable feedback and corrections at various stages of the evolution of this summary.
Appendix D

Rodin

D.1 The Rodin platform
Bibliography


Quotient, 127
Remainder, 127
Sum, 127
The set of integer numbers, 127
The set of natural numbers, 127
The set of positive natural numbers, 127

Numeric relations
Greater, 127
Greater or equal, 127
Less, 127
Less or equal, 127

PO
see proof obligation, 7

Predicates
Conjunction, 126
Disjunction, 126
Equality, 126
Equivalence, 126
Existential quantification, 126
False, 126
Implication, 126
Inequality, 126
Negation, 126
True, 126
Universal quantification, 126

proof-obligation
consistency check, 7
sequent representation, 7

Relations
Backward composition, 128
Direct product, 128
Domain, 128
Domain restriction, 128
Domain subtraction, 128
Forward composition, 128
Identity, 128
Inverse, 128
Irreflexive Closure, 128
Iteration, 128
Overriding, 128
Parallel product, 128
Projection, 128
Range, 128
Range restriction, 128
Range subtraction, 128
Reflexive Closure, 128
Relational image, 128
Relations, 128
Surjective relation, 128
Total relation, 128
Total surjective relation, 128

Set
Cardinality, 126
Cartesian product, 126
Difference, 126
Generalized intersection, 127
Generalized union, 126
Intersection, 126
Non-empty subsets, 126
Ordered pair, 126
Powerset, 126
Quantified intersection, 127
Quantified union, 127
Set comprehension, 126
Union, 126

Set predicates
Finite set, 127
Not a proper subset, 127
Not a subset, 127
Partition, 127
Proper subset, 127
Set membership, 127
Set non-membership, 127
Subset, 127

Sets
Empty set, 126
Set comprehension, 126
Set enumeration, 126
Singleton set, 126

system
design, 3
modelling, 3

Todo, 55, 62

variant
what is it, 23
