

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development The reference model
- Model measurement
- The metric Case study Summary
- Conclusion
- Plug-ins
- Further development

Quantitative Design Decisions Measurement using Formal Method

Fangfang Yuan and Kerstin Eder

University of Bristol

July 16, 2009

・ロト ・回ト ・ヨト ・ヨト

Fangfang Yuan and Kerstin Eder

Quantitative Design Decisions Measurement using Formal Method

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development
- The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

Project Introduction

- Project Background
- Aims and Objectives
- Related works

Model description

- Reference model requirements
- Model development
- The reference model

Model measurement

- The metric
- Case study
- Summary

Conclusion

3

5

6

Plug-ins Further development

Fangfang Yuan and Kerstin Eder

Quantitative Design Decisions Measurement using Formal Method

Project Background

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model
- requirements Model development The reference model
- Model measurement
- The metric Case study
- Summary
- Conclusion
- Plug-ins
- Further development

• Design decisions are made to optimize architectures.

Quantitative Design Decisions Measurement using Formal Method

Project Background

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

- Design decisions are made to optimize architectures.
- Methods are available to justify those design options.

Project Background

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

- Design decisions are made to optimize architectures.
- Methods are available to justify those design options.
- The impact on verification effort has been rarely considered.

Aims and Objectives

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development
- The reference model
- Model measurement
- The metric Case study
- Summary
- Conclusion
- Plug-ins
- Further development

• To find a method that allows engineers to estimate the verification effort behind each design option.

Quantitative Design Decisions Measurement using Formal Method

Aims and Objectives

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development The reference model
- Model measurement
- The metric Case study
- Summary
- Conclusion
- Plug-ins
- Further development

- To find a method that allows engineers to estimate the verification effort behind each design option.
- To extract the correlation between some easily obtained metrics from the formal description and the verification effort.

Related works

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development The reference model
- Model measurement
- The metric Case study
- Summary
- Conclusion
- Plug-ins
- Further development

• Remarkably how little knowledge.

Quantitative Design Decisions Measurement using Formal Method

イロン イヨン イヨン イヨン

э

Related works

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development The reference model
- Model measurement
- The metric Case study
- Summary
- Conclusion
- Plug-ins
- Further development

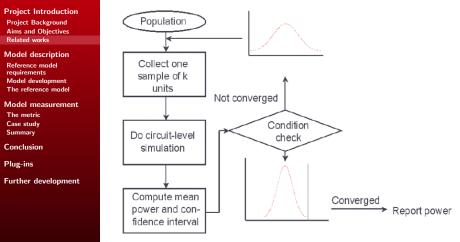
- Remarkably how little knowledge.
- The methodologies that estimate PCB design effort inspired us.

Related works

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development The reference model
- Model measurement
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

- Remarkably how little knowledge.
- The methodologies that estimate PCB design effort inspired us.
- The approaches that lead to the power estimation techniques inspired us.



Power estimation techniques

・ロト ・回ト ・ヨト ・ヨト

э

Outline

Fangfang Yuan and Kerstin Eder Quantitative Design Decisions Measurement using Formal Method

Reference model requirements

Outline

Project Introduction Project Background Aims and Objectives Related works

Model description

- Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

Requirements:

- i Extendible
- ii Early exploration of design options available
- iii Generic

Reference model requirements

Outline

Project Introduction Project Background Aims and Objectives Related works

Model description

- Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

Requirements:

- i Extendible
- ii Early exploration of design options available
- iii Generic HOW ?

Outline

Project Introduction Project Background Aims and Objectives Related works

Model description

- Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

The design decisions in the reference model:

• Control flow evaluation method

Quantitative Design Decisions Measurement using Formal Method

Outline

Project Introduction Project Background Aims and Objectives Related works

Model description

- Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

The design decisions in the reference model:

Control flow evaluation methodInternal storage access method

Outline

Project Introduction Project Background Aims and Objectives Related works

Model description

- Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

The design decisions in the reference model:

- Control flow evaluation method
- Internal storage access method
- Instruction encoding

Outline

Project Introduction Project Background Aims and Objectives Related works

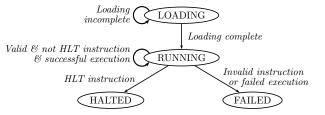
Model description

- Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

The design decisions in the reference model:

- Control flow evaluation method
- Internal storage access method
- Instruction encoding
- Multi-source and multi-destination architecture

・ロト ・同ト ・ヨト ・ヨト



An Event-B Model of an ISA

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description
- Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

The top layer - State Machine

Refinement and event

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description
- Reference model requirements Model development The reference model
- Model measurement
- The metric Case study
- Summary
- Conclusion
- Plug-ins
- Further development

Refinement

- Step-wise refinement.
- Grouped into distinct layers.

Refinement and event

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description
- Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

Refinement

- Step-wise refinement.
- Grouped into distinct layers.

Event

- Horizontally,
 - (a) instructions successfully executed
 - (b) instructions with failed execution
- Vertically,
 - (a) the control flow machine layer
 - (b) the register and the memory machine layer

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description
- Reference model requirements Model development The reference model
- Model measurement
- The metric Case study
- Summary
- Conclusion
- Plug-ins
- Further development

The opcode of the reference model ISA:

Whole ISA

CmpEq CmpGt CmpLt CmpFgt CmpFlt Jmp Branch LdB LdW LdL SB SW SL ...

Add Ior Xor ShI Shr ... Fadd Fsub Fmul Fdiv ...

Fangfang Yuan and Kerstin Eder

Quantitative Design Decisions Measurement using Formal Method

(日) (部) (E) (E)

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development
- The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

Whole ISA		
CmpEq CmpGt CmpL CmpFgt CmpFlt Jmp Branch	t	
LdB LdW LdL SB SW SL Add Ior Xor ShI Shr Fadd Fsub Fmul Fdiv		
FM subset	The rest in the ISA	
pEq CmpGt CmpLt	LdB LdW LdL SB SW SL	

CmpEq CmpGt Cmp CmpFgt CmpFlt Jmp Branch

CF

LdB LdW LdL SB SW SL . Add Ior Xor ShI Shr . . . Fadd Fsub Fmul Fdiv . . .

(日) (部) (E) (E)

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model

requirements Model development The reference model

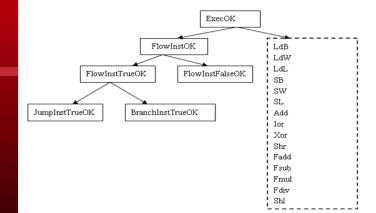
Model measurement

The metric Case study Summary

Conclusion

Plug-ins

Further development


(日) (部) (E) (E)

æ

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description
- Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

・ロト ・回ト ・ヨト ・ヨト

э

Outline

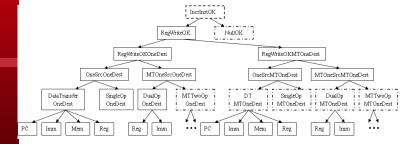
Project Introduction Project Background Aims and Objectives Related works

Model description

Reference model requirements Model development The reference model

Model measurement

The metric


Case study

Summary

Conclusion

Plug-ins

Further development

・ロト ・回ト ・ヨト ・ヨト

3

Refinement - Data refinement

Outline

Project Introduction Project Background Aims and Objectives Related works

Model description

Reference model requirements Model development The reference model

Model measurement

The metric Case study

Summary

Conclusion

Plug-ins

Further development

 $\mathsf{JumpInstTrueOk} \mathrel{\widehat{=}}$

FlowInstTrueOk

any

conditionalAvailable conditional newPtrAvailable newInstPtr

where

 $\begin{array}{ll} grd-inst: instArray(instPtr) \in JumpInst\\ grd-status: status = RUNNING\\ grd-conditionalAvailable:\\ conditionalAvailable = TRUE\\ grd-conditional: conditional = TRUE\\ grd-newPtrAvailable:\\ newPtrAvailable = TRUE\\ grd-newInstPtr:\\ newInstPtr \in InstArrayDom \end{array}$

then

act - instPtr : instPtr := newInstPtr

end

Fangfang Yuan and Kerstin Eder

Quantitative Design Decisions Measurement using Formal Method

Refinement - Data refinement

æ

Outline Project Introduction Project Background	JumpInstTrueRegOk ≘ JumpInstTrueOk
Aims and Objectives	any
Related works	op1Index
	op2Index
Model description	op3Index instr
Reference model requirements	instr op1Data op2Data
Model development	op3Data
The reference model	newInstPtr
Model measurement	where
The metric	grd - instr : instr = instArray(instPtr)
Case study	grd — inst : instr ∈ JumpRegInst grd — status : status = RUNNING
Summary	grd - status : status = ROWING grd - op1Index : op1Index = Inst2Src0Index(instr)
	grd - op2Index : op2Index = Inst2Src1Index(instr)
Conclusion	grd - op3Index: $op3Index = Inst2Src2Index(instr)$
	grd - op1Data : op1Data = regArrayDataLong(op1Index)
Plug-ins	<pre>grd - op2Data : op2Data = regArrayDataLong(op2Index)</pre>
	grd - op3Data: $op3Data = regArrayDataLong(op3Index)$
Further development	grd — newPtrAvailable : LongInDom(op3Data → MaxVector) = TRUE
	grd - newInstPtrAssign : newInstPtr = DataLong2Int(op3Data)
	$grd - conditional$: $CmpFunc(op1Data \mapsto op2Data) = TRUE$
	grd — newInstPtr : newInstPtr ∈ InstArrayDom
	with
	conditionalAvailable : conditionalAvailable = TRUE
	newPtrAvailable : newPtrAvailable = TRUE
	$conditional$: $conditional = CmpFunc(op1Data \mapsto op2Data)$
	then
	act - instPtr : instPtr := newInstPtr
	end ····································
Fangfang Yuan and Kers	stin Eder Quantitative Design Decisions Measurement using Formal Method

Some other tricks

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description
- requirements Model development The reference model
- Model measurement
- The metric Case study
- Summary
- Conclusion
- Plug-ins
- Further development

In the *RM* layer, the mapping of the register system is defined as

 $regArray \in RegArrayDom \rightarrow Data.$

Action in *RegWrite* event

 $\mathsf{regArray}(\mathsf{Index}){:=}\mathsf{srcData}$

Fangfang Yuan and Kerstin Eder

Quantitative Design Decisions Measurement using Formal Method

A D A A B A A B A A B A

Some other tricks

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description
- Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

 $regArray \in RegArrayDom \rightarrow Data.$

Action in *RegWrite* event

regArray(Index):=srcData

 \downarrow

Action in RegWrite event

 $\mathsf{regArray}{:=}\mathsf{regArray} \Leftrightarrow \{\mathit{Index} \mapsto \mathit{srcData}\}$

Fangfang Yuan and Kerstin Eder

Quantitative Design Decisions Measurement using Formal Method

・ロト ・回ト ・ヨト ・ヨト

The reference model

Outline

Project Introduction		
Project Background		
Aims and Objectives		
Related works		

М	odel	desc	rip	tion

Reference model requirements Model development The reference model

Model measurement

The metric Case study

Summary

Conclusion

Plug-ins

Further development

Machine Name	Number of Events	Number of Steps	Description
State Machine (<i>SM</i>)	8	5	Status and instruction groups that change the status are in- troduced.
Control Flow Machine (<i>CFM</i>)	17	5	PC and instruction types are introduced. <i>CFM</i> refines the control flow subset of instruc- tions in <i>SM</i> .
Register Machine (<i>RM</i>)	42	5	The internal storage is intro- duced. <i>RM</i> refines the regis- ter read and write subset of in- structions in <i>CFM</i> .
Memory Machine (<i>MM</i>)	56	7	The external storage is intro- duced. <i>MM</i> refines the mem- ory read and write subset of in- structions in <i>RM</i> .

・ロト ・回ト ・ヨト ・ヨト

æ

The reference model

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development
- The reference model
- Model measurement
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

- Design Options in the reference model
 - Control flow layer
 - (a) Different control flow evaluation options
 - Register machine layer
 - (a) Different access methods
 - (b) Different instruction size and encoding

- (c) Various numbers of sources and destinations available
- Memory machine layer

 (a) Different byte ordering

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development The reference model
- Model measurement
- The metric Case study Summary
- Conclusion
- Plug-ins
- Further development

The *verification effort* is defined as the number of *tests* that have to be carried out to achieve coverage closure.

The *extra* verification effort brought by a design decision is measured by the *extra* number of events at corresponding level of abstraction.

Case study

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description
- Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

CRISP - Cryptographic RISC Processor

- The design decisions implemented in CRISP are as follows:
 - Compare-and-branch control flow instruction
 - Bit aligned control flow instructions
 - A set of registers for internal storage
 - Fixed instruction encoding
 - Up to 4 sources and 2 destinations
 - Look up table for logical operations

Image: A matrix

→ Ξ →

• Constant registers

Compare-and-branch

Outline

Project Introduction Project Background Aims and Objectives Related works

Model description

Reference model requirements Model development The reference model

Model measurement

The metric Case study

Summary

Conclusion

Plug-ins

Further development

	CRISP ^a	Model with condition flag ^b
Number of	$4 \times 2 \times 2^{c}$	4 + 4
instructions		
Number of	64	8+16
events		

^aNon bit-aligned control flow instruction ^bWith the same number of compare functions ^c16 = Functions \times {Jmp, Branch} \times {imm, reg}

Compare-and-branch

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description
- Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

	CRISP ^a	Model with condition flag ^b
Number of	$4 \times 2 \times 2^{c}$	4 + 4
instructions		
Number of	64	8+16
events		

If m is the number of compare functions,

^aNon bit-aligned control flow instruction ^bWith the same number of compare functions ^c16 = Functions \times {Jmp, Branch} \times {imm, reg}

• • = • • = •

Compare-and-branch

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description
- Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

	CRISP ^a	Model with condition flag ^b
Number of	$4 \times 2 \times 2^{c}$	4 + 4
instructions		
Number of	64	8+16
events		

If m is the number of compare functions,

 $4 \times m = 2 \times m + 16$

^aNon bit-aligned control flow instruction ^bWith the same number of compare functions ^c16 = Functions \times {Jmp, Branch} \times {imm, reg}

Compare-and-branch

Outline

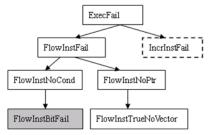
- Project Introduction Project Background Aims and Objectives Related works
- Model description
- Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

	CRISP ^a	Model with condition flag ^b	
Number of	$4 \times 2 \times 2^{c}$	4 + 4	
instructions			
Number of	64	8+16	
events			

If m is the number of compare functions,

 $4 \times m = 2 \times m + 16$ m = 8

^aNon bit-aligned control flow instruction ^bWith the same number of compare functions ^c16 = Functions \times {Jmp, Branch} \times {imm, reg}



Bit-aligned CF instruction

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development
- The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

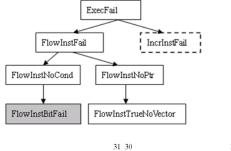
Obviously, there are 4 events per non bit-aligned control flow instruction.

Fangfang Yuan and Kerstin Eder

Quantitative Design Decisions Measurement using Formal Method

A D A A B A A B A A B A

э



Bit-aligned CF instruction

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development
- The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

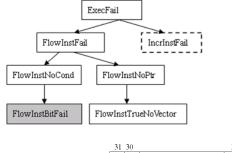
Obviously, there are 4 events per non bit-aligned control flow instruction.

JBIT R1,R2,R3

3

Fangfang Yuan and Kerstin Eder

Quantitative Design Decisions Measurement using Formal Method



Bit-aligned CF instruction

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development
- The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

Obviously, there are 4 events per non bit-aligned control flow instruction.

JBIT R1,R2,R3

イロト イポト イヨト イヨト

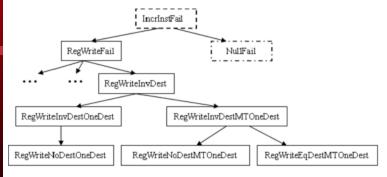
э

- Project Introduction Project Background Aims and Objectives Related works
- Model description
- Reference model requirements Model development The reference model

Model measurement

The metric

Case study


Summary

Conclusion

Plug-ins

Further development

Multi-destination architecture is more complex. Randomly access register reduces the complexity.

(ロ) (同) (E) (E)

э

Fangfang Yuan and Kerstin Eder Quantitative Design Decisions Measurement using Formal Method

Project Introduction Project Background Aims and Objectives Related works

Model description

Reference model requirements Model development The reference model

Model measurement

The metric

Case study

Summary

Conclusion

Plug-ins

Further development

If s is the number of sources, d is the number of destinations, and i is the number of instructions with s operands, the number of events is

$$\begin{cases} i \times (s + d + 3) & \text{if } d = 1 \\ i \times (s + d + 3 + 2^d - 1 - d) & \text{if } d \ge 2 \end{cases}$$

for non-random-access register machine.

$$\left\{\begin{array}{ll}i\times 3 & \text{if } d=1\\i\times (3+2^d-1-d) & \text{if } d\geq 2\end{array}\right.$$

for random-access register machine.

Project Introduction Project Background Aims and Objectives Related works

Model description Reference model requirements

Model development The reference model

Model measurement

The metric

Case study

Summary

Conclusion

Plug-ins

Further development

If s is the number of sources, d is the number of destinations, and i is the number of instructions with s operands, the number of events is

$$\begin{cases} i \times (s+d+3) & \text{if } d=1\\ i \times (s+d+3+C_d^2+C_d^3+\dots+C_d^d) & \text{if } d \ge 2 \end{cases}$$

for non-random-access register machine.

ſ	<i>i</i> × 3	if $d = 1$
Ì	$i \times (3 + C_d^2 + C_d^3 + \cdots + C_d^d)$	if $d \ge 2$

for random-access register machine.

Project Introduction Project Background Aims and Objectives Related works

Model description Reference model

requirements Model development The reference model

Model measurement

The metric

Case study

Summary

Conclusion

Plug-ins

Further development

If s is the number of sources, d is the number of destinations, and i is the number of instructions with s operands, the number of events is

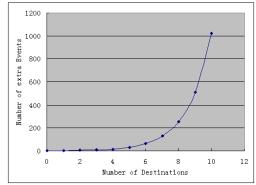
$$\begin{cases} i \times (s + d + 3) & \text{if } d = 1 \\ i \times (s + d + 3 + C_d^2 + C_d^3 + \dots + C_d^d) & \text{if } d \ge 2 \end{cases}$$

for non-random-access register machine.

$$\begin{cases} i \times 3 & \text{if } d = 1\\ i \times (3 + C_d^2 + C_d^3 + \dots + C_d^d) & \text{if } d \ge 2 \end{cases}$$

for random-access register machine.

$$:: \sum_{i=0}^{d} C_{d}^{i} = 1 + d + C_{d}^{2} + C_{d}^{3} + \dots + C_{d}^{d} = 2^{d}$$
$$:: C_{d}^{2} + C_{d}^{3} + \dots + C_{d}^{d} = 2^{d} - 1 - d$$



Constant register

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description
- Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

If *d* is the number of destinations, and *i* is the number of instructions, the number of *extra* events needed to cover errors due to writing to constant registers is $i \times (2^d - 1)$.

Fangfang Yuan and Kerstin Eder

Quantitative Design Decisions Measurement using Formal Method

- 4 回 5 - 4 三 5 - 4 三 5

э

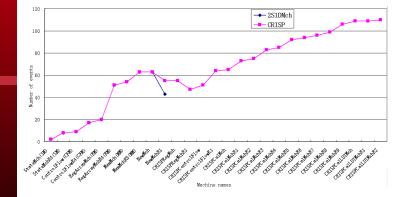
4S2D vs. 2S1D

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development The reference model

Model measurement

The metric


Case study

Summary

Conclusion

Plug-ins

Further development

イロト イヨト イヨト イヨト

э

Fangfang Yuan and Kerstin Eder

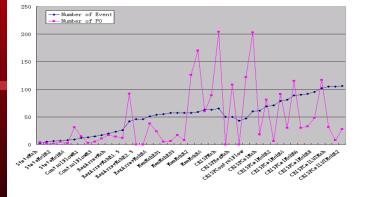
Summary

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements
- Model development The reference model
- Model measurement
- The metric Case study
- Summary
- Conclusion
- Plug-ins
- Further development

- A set of random access registers for internal storage (-)
- Fixed instruction encoding (0)
- Compare-and-branch architecture (-8+)
- Up to 4 sources and 2 destinations
 - i Multi-source architecture + random-access registers (0)
 - ii Multi-destination architecture (+)
- Bit aligned instruction (1+)
- Look up table for logical operations (?)

(ロ) (部) (E) (E)


• Constant registers (2⁺)

of Events vs. # of POs

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

・ロト ・回ト ・ヨト ・ヨト

э

Fangfang Yuan and Kerstin Eder Quantitative Design Decisions Measurement using Formal Method

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development The reference model
- Model measurement The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

- A method of quantitatively measure the verification complexity using Event-B.
- # of events is better than # of POs

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development The reference model
- Model measurement
- The metric Case study
- Summary
- Conclusion
- Plug-ins
- Further development

Features:

• Counts metrics.

イロン イヨン イヨン イヨン

э

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description
- requirements Model development The reference model
- Model measurement
- The metric Case study
- Summary
- Conclusion
- Plug-ins
- Further development

Features:

- Counts metrics.
- shows the evidence of some types of POs.

(日) (部) (E) (E)

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description
- Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

Features:

- Counts metrics.
- shows the evidence of some types of POs.
- Outputs to a $\[mathcar{E}]X$ -formatted file.Example.

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description
- Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

Features:

- Counts metrics.
- shows the evidence of some types of POs.
- Outputs to a PT_EX -formatted file.Example.
- Limitation:

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description
- Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

Features:

- Counts metrics.
- shows the evidence of some types of POs.
- Outputs to a $\[mathcar{E}]X$ -formatted file.Example.

イロト イポト イヨト イヨト

Limitation:

• Labels must be hierarchically named.

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description
- Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

Features:

- Counts metrics.
- shows the evidence of some types of POs.
- Outputs to a $\[mathcar{E}]X$ -formatted file.Example.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Limitation:

- Labels must be hierarchically named.
- No duplicated event names allowed.

Further development

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development The reference model
- Model measurement
- The metric
- Case study
- Summary
- Conclusion
- Plug-ins
- Further development

- POs behind model modifications.
- The tree view plug-in
- Automatic generic model generator
- Etc.

Thank you very much

Outline

- Project Introduction Project Background Aims and Objectives Related works
- Model description Reference model requirements Model development The reference model
- Model measurement The metric
- Case study Summary
- Conclusion
- Plug-ins
- Further development

・ロト ・回ト ・ヨト ・ヨト

æ