
Supporting Reuse of Event-B Developments
through Generic Instantiation

Renato Silva and Michael Butler

School of Electronics and Computer Science
University of Southampton, UK

ras07r,mjb@ecs.soton.ac.uk

Abstract. It is believed that reusability in formal development should
reduce the time and cost of formal modelling within a production envi-
ronment. Along with the ability to reuse formal models, it is desirable
to avoid unnecessary re-proof when reusing models. Event-B is a formal
method that allows modelling and refinement of systems. Event-B sup-
ports generic developments through the context construct. Nevertheless
Event-B lacks the ability to instantiate and reuse generic developments
in other formal developments. We propose a way of instantiating generic
models and extending the instantiation to a chain of refinements. We
define sufficient proof obligations to ensure that the proofs associated to
a generic development remain valid in an instantiated development thus
avoiding re-proofs.

Key words: formal methods, event-B, reusability, generic instantiation

1 Introduction

Reusability has always been sought in several areas as a way to reduce time,
cost and improve the productivity of developments [1]. Examples can be found in
areas like software, mathematics and even formal methods. Generic Instantiation
can be seen as a way of reusing components and solving difficulties raised by the
construction of large and complex models [2, 3]. The goal is to reuse generic
developments (single model or a chain of refinements) and create components
with similar properties instead of starting from scratch. Reusability is applied
through the use of a pattern as the basic structure and afterwards each new
component is generated through parameterisation.

We propose a generic instantiation approach for Event-B by instantiating
machines. The instances inherit properties from the generic development (pat-
tern) and afterwards are parameterised by renaming/replacing those properties
to more specific names according to the instance. Proofs obligations are gener-
ated to ensure that assumptions used in the pattern are satisfied in the instan-
tiation. In that sense our approach avoids re-proof pattern proof obligations in
the instantiation. The models are developed in the Rodin platform [4], which is a
toolset for Event-B [5]. A simple case study modelling a protocol communication
is described to illustrate the use of instantiation.

2 R. Silva and M. Butler

A brief overview of the Event-B Language is given in Section 2. Section 3
defines how generic instantiation is interpreted by us. In section 4 instantiated
machines are introduced. Section 5 gives an application of instantiation in com-
bination with shared event composition. The application of instantiation to a
chain of refinements is described in Section 6. Section 7 discusses an open ques-
tion that arises when instantiating theorems and invariants in a pattern.

2 Event-B Language

Event-B is a formal methodology that uses mathematical techniques based on
set theory and first order logic allowing the specification of systems. An abstract
Event-B specification is divided into two parts: a static part called context and a
dynamic part called machine. A machine SEES as many contexts as desired. The
context consists of sets, constants and assumptions (axioms) of the system. Sets
in the context can be seen as a collection of elements or a type definition. The
machine contains the state variables whose values are assigned in events. Events
can only occur when enable by their guards being true and as a result actions
are executed. Events can have parameters that are local variables to the event
and can be used by the guards or by the actions. The INVARIANT defines the
dynamic properties of the specification. Proof obligations are generated to verify
that the invariant is maintained before and after an event is enabled. Theorems
are properties of the system that have proof obligations associated and usually
are discharged based on other properties of the specified system.

An abstract Event-B specification can be refined by adding more details and
becoming closer to the implementation (more concrete). A context EXTENDS
an abstract context by adding sets, constants or axioms. Nonetheless the abstract
context properties are still assumed. Refinement of a machine consists in refining
existing events. The relation between variables in the concrete and abstract
model is given by a gluing invariant. Proof obligations are generated to ensure
that this invariant is preserved in the concrete model. Also it is possible to add
new events that refine skip as long as the new events do not execute forever and
the abstract events are not hampered.

3 Generic Instantiation

In order to explain our approach for Generic Instantiation we will use a simple
case study. A protocol is modelled between two entities, Source and Destination,
which communicate by sending messages through a channel. The content of the
channel has a maximum dimension. To send a message it is necessary to add the
content of the message to the channel. Based on the proposed requirements it is
possible to create a context ChannelParameters to model the channel as seen in
Fig. 1b.

The content of the message is of type Message and has a maximum dimension
max size. Figure 1a represents the machine side where a variable channel stores
all the sent/received messages. The channel messages have type Message and

Supporting Reuse of Event-B Developments through Generic Instantiation 3
!Channel

!1 !machine Channel sees ChannelParameters

!2 !

!3 !variables channel

!4 !

!5 !invariants

!6 ! @inv1 channel ! Message

!7 ! @inv3 finite(channel)

!8 ! @inv2 card(channel) " max_size

!9 !

!10 !events

!11 ! event INITIALISATION

!12 ! then

!13 ! @act1 channel ! "

!14 ! end

!15 !

!16 ! event Send

!17 ! any m

!18 ! where

!19 ! @grd1 m # Message

!20 ! @grd2 card(channel) < max_size

!21 ! then

!22 ! @act1 channel ! channel # {m}

!23 ! end

!24 !

!25 ! event Receive

!26 ! any m

!27 ! where

!28 ! @grd1 m # channel

!29 ! then

!30 ! @act1 channel ! channel${m}

!31 ! end

!32 !end

!33 !

!Page 1

(a)

!ChannelParameters

!1 !context ChannelParameters

!2 !

!3 !constants max_size

!4 !

!5 !sets Message

!6 !

!7 !axioms

!8 ! @axm1 max_size ! !

!9 !end

!10 !

!Page 1

(b)

Fig. 1. Machine Channel and respective context ChannelParameters

the number of messages in the channel is limited. Messages are introduced in
the channel to be sent as seen in event Send. The event Receive models the
reception of the message in the destination by extracting the messages from the
channel. Elements in ChannelParameters context are the parameters (type and
constant) for the Channel machine.

Now suppose we wish to model a bi-directional communication between two
entities using two channels. Both channels are similar so an option is to instan-
tiate machine Channel twice to create two instances: one channel called Request
and the other Response. The protocol, represented in Fig. 2 starts by a mes-
sage being sent from the Source. After arriving at the Destination, the reception
of the message is acknowledged in the Source. Then a response is sent from
the Destination and after arriving at the Source, it is also acknowledged in the
Destination.

The instantiation of Channel is achieved by applying machine instantiation.
An instance of the pattern Channel is created with more specific properties.
A detailed description of the machine instantiation is described in Section 4.
Moreover, a context containing the specific instances properties is required to
model the protocol. In our case study we use the context ProtocolTypes in Fig.
3, where types Request and Response replace the more generic type Message
and constants qmax size and pmax size replace max size. This context must be
provided by the modeller/developer.

4 R. Silva and M. Butler

Fig. 2. Protocol diagram
!ProtocolTypes

!1 !context ProtocolTypes

!2 !

!3 !constants qmax_size pmax_size

!4 !

!5 !sets Request Response

!6 !

!7 !axioms

!8 ! @axm1 qmax_size ! !

!9 ! @axm2 pmax_size ! !

!10 !end

!11 !

!Page 1

Fig. 3. ProtocolTypes Context

Abrial and Hallerstede [3] and Métayer et al [2] propose the use of generic
instantiation for Event-B. It is suggested that the contexts of a development
(equivalent to the pattern) can be merged and reused through instantiation in
other developments. That proposal lacks a mechanism to apply the instantiation
from the pattern to the instances. Therefore our work proposes a mechanism to
instantiate machines and extend the instantiation to a refinement chain. The
reusability of a development is expressed by instantiating a development (pat-
tern) according to a more specific problem.

4 Generic Instantiation and Instantiated Machines

Inspired by the previous case study and having the ability to compose machines
(Shared Event Composition plug-in [6]) and rename elements (Refactory plug-
in[7]) in the Rodin platform, we propose an approach to instantiate machines. As
mentioned the context plays an important role while instantiating since this is
where the specific properties of the instance are defined (parameterisation). The
use of context is briefly discussed before instantiated machines are introduced.

4.1 Contexts

As aforementioned, contexts in Event-B are the static part of a model containing
properties of the modelled system through the use of axioms and theorems.
Furthermore, having a closer look at the possible usage of contexts, there are
two possible viewpoints:

Supporting Reuse of Event-B Developments through Generic Instantiation 5

Parameterisation : the context is seen only by one machine (or one chain of
machine refinements) and defines specific properties for that machine (sets,
constants, axioms, theorems). These properties are unique for that machine
and any other machine would have different properties.

Sharing : a context is seen by several machines and there are some proper-
ties (sets, constants, axioms, theorems) that are shared by the machines.
Therefore the context is used to share properties.

Several model developments mix both usages for the same context. For the
ordinary modeller this distinction is not very clear and perhaps not so important.
Our approach of generic instantiation reuses components and personalises each
instance implying the use of Parameterisation .

4.2 Example of INSTANTIATED MACHINE

An INSTANTIATED MACHINE instantiates a generic machine (pattern). If the
generic machine sees a context, then the context elements (sets and constants)
have to be replaced by instance elements. The instance elements must exist
already in a context seen by the instantiated machine (in our case study, this
corresponds to ProtocolTypes - see Fig. 3).

Returning to the case study, the instantiated machine QChannel that is an
instance of the machine Channel for requests looks like this:

INSTANTIATED MACHINE QChannel
INSTANTIATES Channel VIA ChannelParameters
SEES ProtocolTypes /* context containing the instance properties*/
REPLACE /* replace parameters in ChannelParameters*/

SETS Message := Request
CONSTANTS max size := qmax size

RENAME /* rename variables and events in machine Channel*/
VARIABLES channel := qchannel
EVENTS Send := QSend

m := q /*optional:rename parameter m in event Send */
Receive := Receive
m := q /*optional:rename parameter m in event Receive */

END

Fig. 4. Instantiated Machine: QChannel instantiates Channel

Note that ChannelParameters elements (sets and constants) are replaced
because the replacement elements are already defined in ProtocolTypes. Machine
elements (variables, parameters and events) are renamed since they did not exist
before. The instantiated machine PChannel that is an instance of Channel for
responses is similar.

6 R. Silva and M. Butler

Axioms in contexts are assumptions about the system and are used for dis-
charging proofs obligations. When instantiating, we need to show that assump-
tions in the pattern are satisfied by the replacement sets and constants. A possi-
ble solution is to convert the pattern axioms into instantiated machine theorems
after the replacement is applied. A theorem has a proof obligation associated.
By ensuring that a proof obligation related to each axiom is generated and
discharged, we are confirming the correctness of the instantiation by satisfying
the pattern assumptions (see theorem thm1 in Fig. 5). “Expanding” machine
QChannel can be seen in Fig. 5.

!QChannel

!1 !machine QChannel sees ProtocolTypes

!2 !

!3 !variables qchannel

!4 !

!5 !invariants

!6 ! @inv1 qchannel ! Request

!7 ! @inv3 finite(qchannel)

!8 ! @inv2 card(qchannel) " qmax_size

!9 ! theorem @thm1 qmax_size ! !

!10 !

!11 !events

!12 ! event INITIALISATION

!13 ! then

!14 ! @act1 qchannel " #

!15 ! end

!16 !

!17 ! event QSend

!18 ! any q

!19 ! where

!20 ! @grd1 q ! Request

!21 ! @grd2 card(qchannel) < qmax_size

!22 ! then

!23 ! @act1 qchannel " qchannel # {q}

!24 ! end

!25 !

!26 ! event Receive

!27 ! any q

!28 ! where

!29 ! @grd1 q ! qchannel

!30 ! then

!31 ! @act1 qchannel " qchannel${q}

!32 ! end

!33 !end

!34 !

!Page 1

Fig. 5. Expanded version of instantiated machine QChannel

The instance QChannel sees the context ProtocolTypes (provided by the mod-
eller/developer) that contains the context information for the instances. The type
Message in context ChannelParameters is replaced by Request in ProtocolTypes,
the constant max size is replaced by qmax size, the variable channel in Channel
is renamed qchannel and event Send is renamed QSend. The axiom that exists
in ChannelParameters is converted into a theorem in QChannel (but easily dis-
charged by the axioms in ProtocolTypes). We convert the axiom axm1 from the
generic context ChannelParameters:

@axm1 max size ∈ N

Supporting Reuse of Event-B Developments through Generic Instantiation 7

into the theorem thm1 in the instance QChannel :

@thm1 qmax size ∈ N

This results from the replacement of the constant max size by qmax size. A
proof obligation is a sequent of the shape:

Hypothesis
`
Goal

For a machine theorem, the respective proof obligation is [8]:

Axioms
Invariants
`
Theorem

For theorem thm1, the proof obligation to be generated is the following:

qmax size ∈ N /*axiom from ProtocolTypes */
pmax size ∈ N /* axiom from ProtocolTypes */
qchannel ⊆ Request /*invariant from QChannel */
. . .
`
qmax size ∈ N

The first axiom of ProtocolTypes easily discharge this proof obligation. Note
the expansion of Qchannel is not required in practice. We use it to show the
meaning of an instantiated machine.

4.3 Definition of Generic Instantiation of Machines

Based on the instantiated machine QChannel, a general definition for generic
instantiation of machines can be drawn. Considering Context Ctx and machine
M in Fig. 6 together as a pattern, we can create a generic Instantiatiated Machine
IM as seen in Fig. 7.

CONTEXT Ctx
SETS S1...Sm

CONSTANTS C1...Cn

AXIOMS Ax1...Axp

(a)

MACHINE M
SEES Ctx
VARIABLES v1...vq

EVENTS ev1...evr

(b)

Fig. 6. Generic view of a context and a machine

8 R. Silva and M. Butler

INSTANTIATED MACHINE IM
INSTANTIATES M VIA Ctx
SEES D /* context containing the instance properties */
REPLACE /* replace elements defined in context C */

SETS S1 := DS1, . . . , Sm := DSm /* Carrier Sets or Constants */
CONSTANTS C1 := DC1, . . . , Cn := DCn

RENAME /*rename elements in machine M*/
VARIABLES v1 := nv1, . . . , vq := nvq /* optional */
EVENTS ev1 := nev1 /* optional */

p1 := np1, . . . , ps := nps /* parameters: optional */
:
evr := nevr

END

Fig. 7. An Instantiated Machine

The context D contains the replacement properties (sets DS1, . . . , DSm and
constants DC1, . . . , DCn) for the elements in context Ctx. The variables, events
and parameters are also renamed by new variables nv1, . . . , nvq, new events
nev1, . . . , nevr and new parameters np1, . . . , nps. From the pattern we are able
to create several instances that can be used in a more specific problem. During
the creation of instances validity checks are required:

1. A static validation of replaced elements is required, e.g., a type must be
replaced with a type, or a constant set and a constant with a constant.

2. All sets and constants should be replaced, i.e., no uninstantiated parameters.
3. A static check must be done to ensure that the instantiated machine specifies

which generic context is being instantiated.

4.4 Avoiding reproofs

As described above, a proof obligation (P.O.) is a sequent of the form H ` G
(short for Hypothesis ` Goal). Renaming variable (or constant) v to w and type
(carrier set) T to S results in instantiated P.O. as following:

[v := w] (H ` G) (variable/constant instantiation)
[T := S] (H ` G) (type instantiation)

H ` G is valid means that the proof has been proved. We assume that if
H ` G is valid then any valid instantiation of H ` G that avoids name clashes is
also valid. Instantiation of variables and constants maintains validity since a se-
quent is implicitly universally quantified over its free variables. We are currently
exploring a formal justification for why type instantiation maintains validity.
Since instantiation maintains the validity of the sequent, the P.O. generated for
the pattern can be reused in the instance and we avoid having to discharge the
instantiated P.O..

Supporting Reuse of Event-B Developments through Generic Instantiation 9

5 Example of Instantiation and Composition

The creation of the instances is a intermediary step in the overall model devel-
opment. In our case study, we model a protocol between entities that sends and
receives messages. By using the created instances and the Shared Event Com-
position [9, 10] plug-in for the Rodin platform we share events between Request
and Response and model the protocol. A composed machine Protocol modelling
this system can be seen in Fig. 8.

COMPOSED MACHINE Protocol
REFINES -
INCLUDES

QChannel
PChannel

EVENTS
SendRequest

Combines Events QChannel.QSend
RecvReq SendResp

Combines Events QChannel.Receive ‖ PChannel.Send
RecvResp

Combines Events PChannel.Receive
END

Fig. 8. Composed Machine Protocol

As seen in Fig. 2, while composing the instance machines QChannel and
PChannel we add the events that are unique for each entity (SendRequest and
RecvResp). SendRequest sends a message through the channel from Source to
Destination. RecvResp models the reception of the response in the Source after
being sent by Destination. Moreover the event that relates the communication
between the two entities is also modelled (RecvReq SendResp). The request is
received and acknowledged and the response to that request is sent in parallel
(from this combined event, a possible refinement is processing the request mes-
sage before sending the response). We opt not to refine an abstract machine in
Fig. 8 (REFINES clause is empty: “-”) although it is possible. The composed
machine Protocol corresponds to the expanded machine in Fig. 9.

The two instances of machine Channel model a bi-directional communication
channel between two entities. This allows us to express the applicability of generic
instantiation for modelling distributed systems without being restricted to this
kind of system. When modelling a finite number of similar components with
some specific individual properties, instantiated machines are a suitable option.

10 R. Silva and M. Butler

!Protocol

!1 !machine Protocol sees ProtocolTypes

!2 !

!3 !variables qchannel pchannel

!4 !

!5 !invariants

!6 ! @inv1 qchannel ! Request

!7 ! @inv2 pchannel ! Response

!8 ! @inv3 card(pchannel) " pmax_size

!9 ! @inv4 card(qchannel) " qmax_size

!10 ! theorem @QChannel/thm1 qmax_size ! !

!11 ! theorem @PChannel/thm2 pmax_size ! !

!12 !

!13 !events

!14 ! event INITIALISATION

!15 ! then

!16 ! @act1 qchannel " #

!17 ! @act2 pchannel " #

!18 ! end

!19 !

!20 ! event SendRequest

!21 ! any q

!22 ! where

!23 ! @grd1 q ! Request

!24 ! @grd2 card(qchannel) < qmax_size

!25 ! then

!26 ! @act1 qchannel " qchannel # {q}

!27 ! end

!28 !

!29 ! event RecvReq_SendResp

!30 ! any q p

!31 ! where

!32 ! @grd1 q ! qchannel

!33 ! @grd2 p ! Response

!34 ! @grd3 card(pchannel) < pmax_size

!35 ! then

!36 ! @act1 pchannel " pchannel # {p}

!37 ! end

!38 !

!39 ! event RecvResp

!40 ! any p

!41 ! where

!Page 1

(a)

!Protocol

!42 !

!43 ! event SendRequest

!44 ! any q

!45 ! where

!46 ! @grd1 q ! Request

!47 ! @grd2 card(qchannel) < qmax_size

!48 ! then

!49 ! @act1 qchannel " qchannel ! {q}

!50 ! end

!51 !

!52 ! event RecvReq_SendResp

!53 ! any q p

!54 ! where

!55 ! @grd1 q ! qchannel

!56 ! @grd2 p ! Response

!57 ! @grd3 card(pchannel) < pmax_size

!58 ! then

!59 ! @act1 pchannel " pchannel ! {p}

!60 ! @act2 qchannel " qchannel"{q}

!61 ! end

!62 !

!63 ! event RecvResp

!64 ! any p

!65 ! where

!66 ! @grd1 p ! pchannel

!67 ! then

!68 ! @act1 pchannel " pchannel"{p}

!69 ! end

!70 !end

!71 !

!Page 2

(b)

Fig. 9. Machine Protocol

6 Generic Instantiation applied to a chain of refinements

The above sections describe generic instantiation applied to individual machines.
Although it is already an interesting way of reusing, in a large model it would be
more interesting to instantiate a chain of machines, or in other words instantiate
a chain of refinements. Suppose we have a development Dv containing several
refinement levels (Dv1, Dv2, . . . , Dvn). The most concrete model Dvn matches a
generic model (pattern) P1 that is part of a chain of refinements P1, P2, . . . , Pm

as seen in Fig. 10. By applying generic instantiation we instantiate the pattern
P1 according to Dvn. That instantiation is a refinement of Dvn and it is called
Dvn+m abs (the suffix abs stands for abstract). In addition we can extend the
instantiation to one of the refinement layers of the pattern and apply it to the de-
velopment Dv. As an outcome we get a further refinement layer for Dvn for free (
Dvn+m abs corresponds to the instantiation of P1 and Dvn+m corresponds to the
instantiation of Pm). The refinement between Dvn+m abs and Dvn+m does not
introduce refinement proof obligations since the proof obligations were already
discharged in the pattern chain. This follows from the instantiated machines
where it is avoided the re-proof of pattern proof obligations. Afterwards Dvn+m

can be further refined to Dvn+m+z. For a better understanding of this approach,
we will refine our case study and apply an instantiation over the pattern chain.

Supporting Reuse of Event-B Developments through Generic Instantiation 11

Fig. 10. Instantiation of a generic chain of refinements

6.1 Refinement of the Channel case study

We will refine the Channel machine. For the first refinement, the requirement is
to include buffers before and after adding a message to the channel. A second
refinement specifies the type Message. In particular, Message will be divided in
two parts: header and body. The header of the Message contains the destination
identification and the body represents the content of the message (data). header
and body are based on the records proposal for Event-B suggested by Evans and
Butler [11] and also in work developed by Rezazadeh et al [12].

The first refinement requires an introduction of two new variables sending-
Buffer and receivingBuffer and a new event addMessageBuffer that loads the
message to sendingBuffer before being introduced in the channel in the Send
event. The latter event reflects the introduction of the buffers. In the event Re-
ceive, messages in channel are extracted and loaded to receivingBuffer as seen
in Fig. 11.

The second refinement is a data refinement over the type Message by dividing
it in header and body. The header contains the destination identification and the
body contains the data of the message. Constants header and body are defined
in the context ChannelParameters C2 as in Fig. 12.

12 R. Silva and M. Butler
!Channel_M1

!1 !machine Channel_M1 refines Channel

!2 !sees ChannelParameters

!3 !

!4 !variables channel sendingBuffer

!5 ! ! ! receivingBuffer

!6 !

!7 !invariants

!8 ! @inv1 sendingBuffer " Message

!9 ! @inv2 receivingBuffer " Message

!10 !

!11 !events

!12 ! event INITIALISATION

!13 ! then

!14 ! @act1 channel ! "

!15 ! @act2 sendingBuffer ! "

!16 ! @act3 receivingBuffer ! "

!17 ! end

!18 !

!19 ! event addMessageBuffer

!20 ! any m

!21 ! where

!22 ! @grd1 m # Message

!23 ! @grd2 m $ sendingBuffer

!24 ! then

!25 ! @act1 sendingBuffer!sendingBuffer#{m}

!26 ! end

!27 !

!28 ! event Send refines Send

!29 ! any m

!30 ! where

!31 ! @grd1 sendingBuffer $ "

!32 ! @grd2 m # sendingBuffer

!33 ! @grd3 card(channel) < max_size

!34 ! then

!35 ! @act1 channel ! channel # {m}

!36 ! @act2 sendingBuffer!sendingBuffer%{m}

!37 ! end

!38 !

!39 ! event Receive refines Receive

!40 ! any m

!41 ! where

!Page 1

(a)

!Channel_M1

!42 !

!43 ! event Send refines Send

!44 ! any m

!45 ! where

!46 ! @grd1 sendingBuffer ! !

!47 ! @grd2 m " sendingBuffer

!48 ! @grd3 card(channel) < max_size

!49 ! then

!50 ! @act1 channel # channel " {m}

!51 ! @act2 sendingBuffer#sendingBuffer#{m}

!52 ! end

!53 !

!54 ! event Receive refines Receive

!55 ! any m

!56 ! where

!57 ! @grd1 m " channel

!58 ! @grd2 m $ receivingBuffer

!59 ! then

!60 ! @act1 channel # channel#{m}

!61 ! @act2 receivingBuffer#receivingBuffer"{m}

!62 ! end

!63 !end

!64 !

!Page 2

(b)

Fig. 11. Channel M1 : refinement of Channel
!ChannelParameters_C2

!1 !context ChannelParameters_C2 extends ChannelParameters

!2 !

!3 !constants header body

!4 !

!5 !sets DATA DESTINATION

!6 !

!7 !axioms

!8 ! @axm3 header ! Message ! DESTINATION

!9 ! @axm4 body ! Message ! DATA

!10 !end

!11 !

!Page 1

Fig. 12. Context ChannelParameters C2

In Fig. 13 the machine Channel M2 data refines the variable channel and
introduces a new event, processMessage that processes the received message
after being retrieved from the receiving buffer. A variable storeDATA is also
introduced to store the data that each destination receives.

6.2 Instantiation of a chain of refinements

We can consider the chain of refinements of Channel as a pattern. In that case,
having all the proof obligations discharged we can reuse this pattern in a more
specific development. The chain of refinements is seen as a single entity where
it is possible to choose an initial and a final refinement level.

Using our case study, we intend to instantiate and refine QChannel with the
chain of refinements of machine Channel, selecting Channel and Channel M2
as our initial and final refinement levels respectively. In Fig. 14 the shaded
chain of refinement is seen as a single entity. After the selection of the two

Supporting Reuse of Event-B Developments through Generic Instantiation 13

!Channel_M2

!1 !machine Channel_M2 refines Channel_M1

!2 !sees ChannelParameters_C2

!3 !

!4 !variables channel sendingBuffer

!5 ! ! ! receivingBuffer storeDATA

!6 !

!7 !invariants

!8 ! @inv1 storeDATA ! DESTINATION ! "(DATA)

!9 !

!10 !events

!11 ! event INITIALISATION

!12 ! then

!13 ! @act1 channel " #

!14 ! @act2 sendingBuffer " #

!15 ! @act3 receivingBuffer " #

!16 ! @act4 storeDATA " DESTINATION " {#}

!17 ! end

!18 !

!19 ! event addMessageBuffer

!20 ! refines addMessageBuffer

!21 ! any h b m

!22 ! where

!23 ! @grd1 header(m) = h

!24 ! @grd2 body(m) = b

!25 ! @grd3 m $ sendingBuffer

!26 ! then

!27 ! @act4 sendingBuffer"sendingBuffer#{m}

!28 ! end

!29 !

!30 ! event send refines Send

!31 ! any m

!32 ! where

!33 ! @grd1 sendingBuffer $ #

!34 ! @grd2 m ! sendingBuffer

!35 ! @grd3 card(channel) < max_size

!36 ! then

!37 ! @act1 channel " channel # {m}

!38 ! @act2 sendingBuffer"sendingBuffer%{m}

!39 ! end

!40 !

!41 ! event receive refines Receive

!Page 1

(a)

!Channel_M2

!42 !

!43 !

!44 ! event send refines Send

!45 ! any m

!46 ! where

!47 ! @grd1 sendingBuffer ! !

!48 ! @grd2 m " sendingBuffer

!49 ! @grd3 card(channel) < max_size

!50 ! then

!51 ! @act1 channel # channel " {m}

!52 ! @act2 sendingBuffer#sendingBuffer#{m}

!53 ! end

!54 !

!55 ! event receive refines Receive

!56 ! any m

!57 ! where

!58 ! @grd1 m " channel

!59 ! @grd2 m $ receivingBuffer

!60 ! then

!61 ! @act1 channel # channel#{m}

!62 ! @act2 receivingBuffer#receivingBuffer"{m}

!63 ! end

!64 !

!65 ! event processMessage

!66 ! any m dest d

!67 ! where

!68 ! @grd1 m " receivingBuffer

!69 ! @grd3 header(m) = dest

!70 ! @grd4 d = body(m)

!71 ! @grd5 dest " dom(storeDATA)

!72 ! then

!73 ! @act1 storeDATA(dest)#storeDATA(dest)"{d}

!74 ! end

!75 !end

!76 !

!Page 2

(b)

Fig. 13. Channel M2 : refinement of Channel M1

refinement levels to be instantiated, QChannel M2 abs and QChannel M2 are
created. QChannel M2 is treated as a refinement of QChannel M2 abs as a con-
sequence of the instantiation. Subsequently, QChannel M2 can be further refined
to QChannel Mz.

The refinement relationship between Channel and Channel M2 is ensured by
discharging all the proof obligations in the chain of refinement (all the proofs are
discharged automatically in the Rodin platform). By instantiating Channel and
Channel M2 implicitly we are also referring to Channel M1. Some of the prop-
erties of Channel M2 are inherited from Channel M1 (for instance the buffers)
but for the instantiation purpose it is not necessary to incorporate Channel M1
explicitly. The instantiation of a chain of refinements follows the instantiation of
a single machine as seen in Fig. 15.

The initial refinement level corresponds to the most abstract machine of the
pattern. The final refinement level is any of the other refinement levels in the
chain. The replacement and renaming is applied to the occurrences in both in-
stances whenever applicable. Once again it is not necessary to “expand” QChan-
nel M2 but that can be seen in Fig. 16.

In an instantiation of a chain of refinements, the pattern context is seen as
a flat context comprising all the properties seen by the refinements until the
selected final refinement level is reached. Therefore context ProtocolTypes C2
is the parameterisation context for QChannel M2 and extends ProtocolTypes

14 R. Silva and M. Butler

Fig. 14. Instantiation of a chain of refinements: Channel to Channel M2

INSTANTIATED REFINEMENT QChannel M2
INSTANTIATES Channel M2 VIA ChannelParameters C2
REFINES -
SEES ProtocolTypes C2
REPLACE

SETS Message := Request
CONSTANTS max size := qmax size

header := qHeader
body := qBody

RENAME
VARIABLES channel := qchannel

receivingBuffer := qReceivingBuffer
sendingBuffer := qSendingBuffer

EVENTS Send := QSend
m := q
receive := Receive
m := q

END

Fig. 15. Instantiation of a chain of refinements

Supporting Reuse of Event-B Developments through Generic Instantiation 15

!QChannel_M2

!1 !machine QChannel_M2 refines QChannel_M1

!2 !sees ProtocolTypes_C2

!3 !

!4 !variables qchannel qReceivingBuffer

!5 ! ! ! qSendingBuffer qStoreDATA

!6 !

!7 !invariants

!8 ! @inv1 qStoreDATA ! DESTINATION ! "(DATA)

!9 ! theorem @theo1 qHeader ! Request " DESTINATION

!10 ! theorem @theo2 qBody ! Request " DATA

!11 !

!12 !events

!13 ! event INITIALISATION

!14 ! then

!15 ! @act1 qchannel " #

!16 ! @act2 qSendingBuffer " #

!17 ! @act3 qReceivingBuffer " #

!18 ! @act4 qStoreDATA " DESTINATION # {#}

!19 ! end

!20 !

!21 ! event AddMessageBuffer

!22 ! refines qAddMessageBuffer

!23 ! any h b m

!24 ! where

!25 ! @grd1 qHeader(m) = h

!26 ! @grd2 qBody(m) = b

!27 ! @grd3 m $ qSendingBuffer

!28 ! then

!29 ! @act1 qSendingBuffer " qSendingBuffer${m}

!30 ! end

!31 !

!32 ! event QSend refines QSend

!33 ! any q

!34 ! where

!35 ! @grd1 qSendingBuffer % #

!36 ! @grd2 q ! qSendingBuffer

!37 ! @grd3 card(qchannel) < qmax_size

!38 ! then

!39 ! @act1 qchannel " qchannel $ {q}

!40 ! @act2 qSendingBuffer"qSendingBuffer&{q}

!41 ! end

!Page 1

(a)

!QChannel_M2

!42 !

!43 ! event QSend refines QSend

!44 ! any q

!45 ! where

!46 ! @grd1 qSendingBuffer ! !

!47 ! @grd2 q " qSendingBuffer

!48 ! @grd3 card(qchannel) < qmax_size

!49 ! then

!50 ! @act1 qchannel # qchannel " {q}

!51 ! @act2 qSendingBuffer#qSendingBuffer#{q}

!52 ! end

!53 !

!54 ! event Receive refines Receive

!55 ! any q

!56 ! where

!57 ! @grd1 q " qchannel

!58 ! @grd2 q $ qReceivingBuffer

!59 ! then

!60 ! @act1 qchannel # qchannel#{q}

!61 ! @act2 qReceivingBuffer#qReceivingBuffer"{q}

!62 ! end

!63 !

!64 ! event processMessage

!65 ! any m dest d

!66 ! where

!67 ! @grd1 m " qReceivingBuffer

!68 ! @grd2 qHeader(m) = dest

!69 ! @grd3 d = qBody(m)

!70 ! @grd4 qHeader(m) " dom (qStoreDATA)

!71 ! then

!72 ! @act1 qStoreDATA(dest)#qStoreDATA(dest)"{d}

!73 ! end

!74 !end

!75 !

!Page 2

(b)!ProtocolTypes_C2

!1 !context ProtocolTypes_C2 extends ProtocolTypes

!2 !

!3 !constants qHeader qBody pHeader pBody

!4 !

!5 !sets DATA DESTINATION

!6 !

!7 !axioms

!8 ! @axm3 qHeader ! Request ! DESTINATION

!9 ! @axm4 qBody ! Request ! DATA

!10 ! @axm5 pHeader ! Response ! DESTINATION

!11 ! @axm6 pBody ! Response ! DATA

!12 !end

!13 !

!Page 1

(c)

Fig. 16. Expanded version of instantiated machine QChannel M2 and context Proto-
colTypes C2

similarly to the relation between contexts ChannelParameters C2 and Channel-
Parameters. As before, axioms in ProtocolTypes C2 must be respected in the
instance, so axioms are converted in theorems in QChannel M2.

6.3 Definition of Generic Instantiation of Refinements

From the case study it is possible to draw a generic definition for the instantiation
of a chain of refinements. If we consider a pattern that consists of a chain of
refinements M1, M2, . . . Mt , we can create a generic Instantiated Refinement
IR as seen in Fig. 17.

The instantiated refinement IR instantiates one of the refinements of the pat-
tern Mt via the parameterisation context Ctxt. IR refines an abstract machine

16 R. Silva and M. Butler

INSTANTIATED REFINEMENT IR
INSTANTIATES Mt VIA Ctxt

REFINES IR0 /* abstract machine */
SEES Dw /* context containing the instance properties */
REPLACE /* replace elements defined in context C */

SETS S1 := DS1, . . . , Sm := DSm /* Carrier Sets or Constants */
CONSTANTS C1 := DC1, . . . , Cn := DCn

RENAME /*rename variables, events and params in M1 to Mt*/
VARIABLES v1 := nv1, . . . , vq := nvq

EVENTS ev1 := nev1 / ∗ optional ∗ /
p1 := np1, . . . , ps := nps / ∗ parameters :optional ∗ /

...
evr := nevr

END

Fig. 17. An Instantiated Refinement

IR0 and sees the context Dw containing the instance properties. The replace-
ment and renaming are similar to the machine instantiation but apply to both
M1 and Mt. In addition to the validity checks for instantiated machines, instan-
tiated refinements require:

1. A static validation for the existence of a chain of refinements for M
(M1, M2, . . . ,Mt).

2. The types and constants in the contexts seen by the initial and final level of
refinement should be instantiated.

The instantiation of refinements reuses the pattern proof obligations in the
sense that the instantiation renames and replaces elements in the model but does
not change the model itself (nor the respective properties). The correctness of
the refinement instantiation relies in reusing the pattern proof obligations and
ensuring the assumptions in the context parameterisation are satisfied in the
instantiation.

7 Instantiating Theorems and Invariants

Theorems in contexts and machines are assertions about characteristics and
properties of the system. Theorems have proof obligations associated that are
discharged based on the model assumptions (axioms and invariants) . Once the
theorems are discharged, they can be used as hypotheses for discharging other
proof obligations in the model since they work as a consequence of the assump-
tions. On the other hand, invariants in machines are properties of the model that
need to be maintained by all events.

Supporting Reuse of Event-B Developments through Generic Instantiation 17

An interesting question arises when a pattern is instantiated and contains
theorems and invariants. If a proof obligation of a theorem is discharged by cre-
ating an instance we would not want to re-prove the theorem proof. Regarding
the invariants and respective proof obligations we would have a similar situa-
tion where we would not want to discharge proof obligations in the instance if
they were already discharged in the pattern. Ideally we would like to add to the
instance the assumptions and assertions given by the theorems and invariants
without re-proving them. Although addressed here as an open question, this sit-
uation suggests a different kind of theorem that does not exist in Event-B, a
pre-proved theorem to be used in the instance. A pre-proved theorem would be
similar to a theorem but it would not have associated a proof obligation. The
invariants imported from the pattern fall under the same category where the
respective proof obligations should not be re-generated. Informally the instances
are just renaming and replacing elements without changing the semantics un-
der the original pattern (if the validity checks are followed) so theorems and
invariants would work as assumptions in the instantiated machine. The assump-
tions in the pattern (axioms) need to be satisfied by the instances through the
generation of proof obligations but the same does not apply for invariants and
theorems that are assertions in the pattern.

8 Conclusions

Reusability is of significant interest in the general software engineering research
community. Advantages and disadvantages have been discussed in terms of how
to reuse. Examples are given by Standish [1] and Cheng [13]. Reusing patterns in
a style similar to design patterns is proposed in [14] using the KAOS specifica-
tion language and temporal logic. The patterns are proved correct and complete
and proofs can be reused. Sabatier [15] discusses the reuse of formal models as
a detailed component specification or as a high level requirement and presents
some real project examples. In classical B [16, 17], reuse is expressed using the
keywords INCLUDES and USES where an existing machine can be used in other
developments. Instantiation is a way of reusing. Instantiation is well-established
in areas such as mathematics and other formal methods like classical B or the-
orem provers like Isabelle [18]. [19] reuses Gang of Four (GoF) design pattern
adapted to formal specifications (denominated specification patterns) for clas-
sical B. Several reuse mechanisms are suggested like instantiation, composition
and extension. Proof obligations are also reused when the patterns are applied.
Focusing on the instantiation, this is achieved by renaming sets (machine pa-
rameters), variables and operations. Unlike our work, this approach only defines
patterns as single abstract machine whereas we define the parameterisation in
contexts and extend the pattern to a chain of refinements. Abrial and Hallerstede
[3] and Métayer et al [2] make use of generic instantiation for Event-B. It is pro-
posed the flattening of the context in a way that the contexts of the pattern are
merged and it is suggested the reuse by instantiating the flat context. Following
that approach, we decide to propose an implementation of generic instantiation.

18 R. Silva and M. Butler

The motivation for such implementation is concerned with reusability of compo-
nents and existing developments. By creating an instance from a generic model,
a new parameterised model is created based on the pattern with new specific
properties.

Event-B supports generic developments but lacks capacity to instantiate and
reuse those generic developments. As a solution, generic instantiation is applied
to patterns and as an outcome instantiated machines are created and parame-
terised. An instantiated machine instantiates a generic machine, is parameterised
by a context and the pattern elements are renamed/replaced according to the
instance. In a similar style, an instantiated refinement instantiates a chain of
refinements reusing the pattern proof obligations assuming that the instantiated
proof obligations are as valid as the pattern ones. As future work we intend
to prove this assumption. By quantifying the variables/constants and types we
want to ensure that pattern proof obligations remain valid when instantiating.
Event-B is not a high-order formalism: although it is possible to quantify vari-
ables and constants, it is not possible to quantify types. So we need to use a
higher-order formalism to ensure that the instantiation of types maintains the
validity of associated proof obligations. A practical case that models a commu-
nication protocol between two entities illustrates the advantages of using generic
instantiation and in particular how to use our approach in the Rodin platform.
Although a simple case study, we believe that it can be applied to more complex
cases.

Further study is required to determine if context instantiation similar to
instantiated machines is a worthwhile approach while modelling. Some method-
ological points will arise in a possible implementation of instantiated machines
and refinements in the Rodin platform. As an example, Section 7 addresses the
situation of instantiating theorems and invariants and is left as an open ques-
tion. A future step for the instantiation of a chain of refinements is to study the
possibility of selecting any of the refinement levels as the initial refinement level
giving more freedom to the modeller. In a long term perspective, any refinement
chain could be considered a pattern or a library of patterns should be provided
when modelling: whenever a formal development fits in a pattern, instantiation
could be applied taking advantage of the reusability of the model and respective
proof obligations.

Acknowledgments We would like to thank Jean-Raymond Abrial and Thai
Son Hoang for valuable discussions about this paper. Also Hannah Warren for
helping in the review of initial versions of the paper. We also thank the anony-
mous reviewers for their inputs and suggestions.

References

1. Standish, T.A.: An Essay on Software Reuse. IEEE Trans. Software Eng. 10(5)
(1984) 494–497

Supporting Reuse of Event-B Developments through Generic Instantiation 19

2. Métayer, C., Abrial, J.R., Voisin, L.: Event-B Language. Technical report, Deliver-
able 3.2, EU Project IST-511599 - RODIN (May 2005)

3. Abrial, J.R., Hallerstede, S.: Refinement, Decomposition, and Instantiation of Dis-
crete Models: Application to Event-B. Fundam. Inf. 77(1-2) (2007) 1–28

4. Rodin: RODIN project Homepage. http://rodin.cs.ncl.ac.uk (September 2008)
5. Abrial, J.R., Butler, M.J., Hallerstede, S., Voisin, L.: An Open Extensible Tool

Environment for Event-B. In: ICFEM. (2006) 588–605
6. Silva, R., Butler, M.: Parallel Composition Using Event-B. http://wiki.event-b.
org/index.php/Parallel_Composition_using_Event-B (July 2009)

7. Silva, R.: Renaming Framework.
http://wiki.event-b.org/index.php/Refactoring_Framework (July 2009)

8. Abrial, J.R.: Summary of Event-B Proof Obligations. http://www.docstoc.com/

docs/7055755/Summary-of-Event-BProof-Obligations (March 2008)
9. Butler, M.: An Approach to the Design of Distributed Systems with B AMN. In:

Proc. 10th Int. Conf. of Z Users: The Z Formal Specification Notation (ZUM), LNCS
1212. (1997) 221–241

10. Butler, M.: Synchronisation-based Decomposition for Event-B. In: RODIN Deliv-
erable D19 Intermediate report on methodology. (2006)

11. Evans, N., Butler, M.: A Proposal for Records in Event-B. In Nipkow, T., Misra,
J., Sekerinski, E., eds.: Formal Methods 2006. Volume LNCS 4085., Springer (2006)
221–235

12. Rezazadeh, A., Evans, N., Butler, M.: Redevelopment of an Industrial Case Study
Using Event-B and Rodin. In: BCS-FACS Christmas 2007 Meeting - Formal Methods
In Industry. (December 2007)

13. Cheng, J.: A Reusability-Based Software Development Environment. SIGSOFT
Softw. Eng. Notes 19(2) (1994) 57–62

14. Darimont, R., van Lamsweerde, A.: Formal Refinement Patterns for Goal-Driven
Requirements Elaboration. In: SIGSOFT ’96: Proceedings of the 4th ACM SIG-
SOFT symposium on Foundations of software engineering, New York, NY, USA,
ACM (1996) 179–190

15. Sabatier, D.: Reusing Formal Models. In: IFIP Congress Topical Sessions. (2004)
613–620

16. Schneider, S.: The B method: an introduction. Palgrave (2001)
17. Abrial, J.R.: The B-Book: Assigning programs to meanings. Cambridge University

Press (1996)
18. Paulson, L.C.: Isabelle: a Generic Theorem Prover. Volume 828 of Lecture Notes

in Computer Science. Springer – Berlin (1994)
19. Blazy, S., Gervais, F., Laleau, R.: Reuse of Specification Patterns with the B

Method. In Springer-Verlag SEP, ed.: ZB 2003: Formal Specification and Develop-
ment in Z and B Lecture Notes in Computer Science. Volume 2651 of Lecture Notes
in Computer Science., Turku, Finland (June 2003) 40–57

