A Theory of Finite Sets, Lists, and Maps

for the SMT-LIB Standard

Daniel Kroening Philipp Rummer Georg Weissenbacher

Oxford University Computing Laboratory
philr@comlab.ox.ac.uk

Rodin User and Developer Workshop
University of Southampton
15-17 July 2009

1/17

philr@comlab.ox.ac.uk

@ Overview of SMT-LIB

@ Proposal of new theories for SMT-LIB 2
= Primarily format, no tool

@ Application to Event-B, VDM
@ Practical and theoretical issues

More information, implementation (soon), paper:
http://www.philipp.ruemmer.org

http://www.philipp.ruemmer.org

The SMT-LIB Standard

SMT — Satisfiability Modulo Theories

SMT-LIB is . ..

@ a standardised input format for SMT-solvers (since 2003)
@ a standardised format for exchanging SMT problems
@ a library of more than 60 000 SMT benchmarks

@ the basis for the annual SMT competition
(this year: on CADE)

Theories in SMT-LIB:
@ integer and rational arithmetic (linear)
@ uninterpreted functions
@ arrays
@ bit-vectors

The SMT-LIB Standard (2)

Some state-of-the-art SMT-solvers:
@ Alt-Ergo, Argo-lib, Barcelogic, CVC3, DTP, Fx7, haRVey,
MathSAT, Spear, STP, Yices, Z3
@ All are completely automatic

@ Standard architecture:
DPLL + small theory engines + quantifier heuristics

@ “Good for shallow reasoning”

@ Used as back-ends in many verification systems:
Krakatoa, Caduceus, ESC/Java2, Spec#, VCC, Havoc,
CBMC, ...

Example in SMT-LIB Format

(benchmark Ensures_Q_ noinfer_2
:source { Boogie/Spec# benchmarks. }
:logic AUFLIA

rextrapreds ((InRange Int Int))
rextrafuns ((this Int))
rextrafuns ((intAtLeast Int Int Int))
rassumption
(forall (?t Int) (?u Int) (?v Int)
(implies (and (subtypes ?t ?u) (subtypes ?u ?v)) (subtypes 2t ?v))

:pat (subtypes ?t ?u) (subtypes ?u ?v))

:formula
(not (implies (implies (implies (implies
(and
(forall (2o Int) (?F Int)
(implies (and (= 20 this) (= ?F X)) (= (select2 H 20 ?F) 5)))
(implies
(forall (?o Int) (?F Int)
(implies (and (= 2o this) (= ?F X)) (= (select2 H 20 ?F) 5)))

(implies true true)))
= ReallylastGeneratedExit_correct Smt.true))
(= ReallylLastGeneratedExit_correct Smt.true))
(= start_correct Smt.true))
(= start_correct Smt.true)))) 5/17

(

The SMT-LIB Format

SMT-LIB is currently quite low-level:
@ No high-level datatypes like sets, lists, etc.

Solutions practically used:

@ Much can be encoded in arrays + axioms
(+ prover-specific extensions)

@ Some solvers offer algebraic datatypes
(not standardised)

= Against the idea of SMT-LIB

The SMT-LIB Format (2)

@ Current version of the standard: 1.2
@ Version 2 to be finished sometime in 2009

New Features in Version 2

@ Type constructors, parametric theories
@ Various simplifications
o ...

@ New theories! (hopefully)

Proposal for New SMT-LIB Theories

Datatypes inspired by VDM-SL

@ Tuples

@ (Finite) Lists

@ (Finite) Sets

@ (Finite) Partial Maps

Our main applications

@ Reasoning + test-case generation for UML/OCL
@ (Bounded) Model checking with abstract library models
e VDM-SL

Tuples Sets Lists Maps
(Tuple (Set T) (List T) (Map S T)
Ty ... Tp)
tuple emptySet (| nil []| emptyMap 0
(X1,...,Xp) | insert cons X:uL|apply f(x)
project MU {x} | head overwrite
Xk | in € | tail <
product subset C | append ™ | domain
My x---x M, | union U | length |/| | range
inter N | nth Iy | restrict «
setminus \ | inds subtract <
card M| {1,..., 11}

elems

{hy oo h}

Signature of the SMT-LIB Theories

17

Example: Verification Cond. Generated by VDMTools

In VDM-SL notation:
VI L(Z),i:N. (i € inds(/) = Vj € inds(/) \ {i}. j € inds(/))

In SMT-LIB notation:

(forall ((1 (List Int)) (i Int))
(implies
(and (>= 1 0) (in i (inds 1)))
(forall (3j Int)
(implies
(in j (setminus (inds 1) (set 1i)))
(in J (inds 1))))))

10/17

Event-B File System Case Study (delete/inv8)

parent € objects \ {root} — objects,
obj € objects \ {root}, des C objects,
des = (tcl(parent)) ~ [{obj}], o0bjs = des U {obj}
= objs g parent € (objects \ objs) \ {root} — objects \ objs

objects, des, objs : (Set OBJECT)
parent : (Map OBJECT OBJECT)
obj : OBJECT

(implies ... (and
(= (domain (subtract parent obijs))
(setminus objects
objs (insert emptySet root)))
(subset (range (subtract parent obijs))
(setminus objects objs))

))

11/17

Application to Event-B Verification Conditions (2)

Translation of Event-B proof obligations

@ Carrier sets — SMT-LIB types
@ Sets — finite sets
@ Functions — finite partial maps or arrays

@ SMT-LIB is strongly typed — type inference necessary
@ Potential issue: finiteness of SMT-LIB datatypes

12/17

Status of the Proposal

@ Syntax + Semantics of theories is formally defined
= In collaboration with Cesare Tinelli
= To be discussed at SMT workshop 2009

@ Pre-processor is under development
= Converter SMT-LIB 2 — SMT-LIB 1

@ Decidability is being investigated

@ WANTED: benchmarks
= Necessary to get theories included in SMT-LIB standard
= Event-B benchmarks would be awesome!

13/17

|dentified Sublogics (work in progress)

@ Sets with cardinality:

@ Sets + Tuples:

@ Lists with length:

@ Finite Maps:

@ Combined theories:

non-nested: decidable
nested + quantifiers: undecidable
nested, quantifier-free: ???

undecidable
word equations with

equal-length predicate,
known open problem

7?77

undecidable

14/17

Initial Implementations (in progress)

@ Sets with cardinality:

@ Tuples:

@ Lists with length:

@ Finite Maps:

arrays +
axioms

algebraic datatype, or
axioms

algebraic datatype +
axioms

arrays +
axioms

15/17

Conclusion

Trade-off when defining theories:
@ Generality — good for users
@ Implementation complexity
@ Decidability

— good for tool writers

= We hope that we have found a good compromise
= Feedback is welcome!

16/17

Thanks for your attention!

17/17

