
Theory Plug-in User Manual

Issam Maamria, Asieh Salehi Fathabadi
University of Southampton

April 30, 2014

The Theory plug-in is a contribution to the Rodin platform that facilitates
the specification, validation, deployment and use of language and proof
extensions for the Event-B methodology. Language extensions are additions to
the Event-B mathematical language in the form of 1) datatypes, 2) operators
and 3) axiomatic definitions. Proof extensions are additions to the Event-B
proving infrastructure in the form of rewrite rules, inference rules and polymor-
phic theorems. The specification of extensions is achieved by means of theories

. The validation of extensions is achieved by means of proof obligations when-
ever appropriate. This user manual provides a comprehensive overview of the
plug-in’s functionality and capabilities.

For a quick start guide, the user can skip to Section 3.

The Event-B mathematical language refers to the language used to
write axioms, invariants, guards etc. in Event-B models.

Event-B theories are Rodin file just like contexts and machines.

1 Motivation

Work on the Theory plug-in started as an effort to create a Rule-based Prover
for Event-B much like the ML prover in Atelier-B. The Rule-based Prover, as it
was known then, supported the definition, validation and use of rewrite rules.
The Theory plug-in is the successor of the Rule-based Prover, and offers much
more functionality.

Prior to Rodin v2.0, the mathematical language used in Event-B was fixed.
As such, it was not possible to define reusable polymorphic operators. A
workaround was to define any required operators as set constructs in contexts.
Originally, contexts were supposed to provide a parametrization of machines.
The aforementioned limitations of the Event-B language lead to users to use
contexts for purposes for which they were not intentionally devised. Examples
of operators that can be useful to users include the sequence operator (which
was present in classical B mathematical language) and the bag operator.

In Rodin v2.0, a dynamic parser has been implemented for the Event-B AST.
The Theory plug-in was a natural candidate for defining and using mathematical

1



extensions. To provide a comprehensive platform, cover for a wider range of
proof rules was also needed.

ML is a rule-based prover as opposed to the semi-decision procedure PP.

2 Capabilities

The Theory plug-in has the following capabilities:

1. Theory Definition:

(a) Definition of operators: operators can be defined as predicate or
expression operators. An expression operator is an operator that
”returns” an expression, an example existing operator is card. A
predicate operator is one that ”returns” a predicate, an example ex-
isting predicate operator is finite.

(b) Definition of datatypes: datatypes are defined by supplying the
types on which they are polymorphic, a set of constructors one of
which has to be a base constructor. Each constructor may or may
not have destructors.

(c) Definition of axiomatic definitions: axiomatic definitions are de-
fined by supplying the types, a set of operators, and a set of axioms.

(d) Definition of rewrite rules: rewrite rules are one-directional equal-
ities that can be applied from left to right. The Theory plug-in can
be used to define rewrite rules.

(e) Definition of inference rules: inference rules can be used to infer
new hypotheses, split a goal into sub-goals or discharge sequents.

(f) Definition of polymorphic theorems: theorems can be defined
and validated once, and can then be imported into sequents of proof
obligations if a suitable type instantiation is available.

(g) Validation of extensions: where appropriate, proof obligations are
generated to ensure soundness of extensions. This includes, proof
obligations for validity of inference and rewrite rules, as well as proof
obligations to validate operator properties such as associativity and
commutativity.

2. Theory Deployment: this step signifies that a theory is ready for use.
Theories can be deployed after they have been optionally validated by
the user. It is strongly advisable to discharge all proof obligations before
deployment.

Once a theory has been deployed and introduced to its designated project, all
its extensions (mathematical and proof extensions) can be used in models. In
later sections, we show the scopes of theory availability.

2



In the Event-B mathematical language, predicates (known as formulae in
most literature) and expressions (known as terms) are two separate syntactic
categories. Expressions have a type. Predicate do not.

3



3 Quick Start

In this section, we step through a simple tutorial on how to define and use a
simple theory. Click on the links above to navigate through this tutorial.

3.1 Install Theory Plug-in

Considering figure 1, the installation or update for the Theory plug-in is avail-
able under the main Rodin Update site (http://rodin-b-sharp.sourceforge.
net/updates) under the category ”Modelling Extensions”. Like always, af-
ter the installation, restarting Rodin is recommended. For more details, see
http://wiki.event-b.org/index.php/Theory_News_and_Support.

Figure 1: Install Theory Plug-in

Once the Theory plug-in is successfully installed, menu entries will be added
in certain places, see figure 2. In particular, the Event-B Explorer will have an
additional button that initiates the wizard to create new theory files.

4

http://rodin-b-sharp.sourceforge.net/updates
http://rodin-b-sharp.sourceforge.net/updates
http://wiki.event-b.org/index.php/Theory_News_and_Support


Figure 2: New Theory Button in Event-B Explorer

3.2 Create A New Theory

An additional button (red-circled in figure 2) should appear in the Event-B
Explorer. By clicking the button , a wizard that enables the creation of a new
theory is initiated. Figure 3 shows the wizard in action.

Figure 3: New Theory File Wizard

In the wizard, specify the parent project of the theory and a theory name.
The project can be selected using the button on the right hand side of project
name text field (akin to selecting a project when creating a new Event-B com-
ponent). Click the Finish button to create the theory. If there are no name
clashes between the name of the new theory and any existing resources, you
should get a theory editor opened up as depicted in figure 4.

The theory editor has two pages: an Edit page and an HTML (i.e., pretty
print) page. The edit page corresponds to the structured editor. The HTML

5



Figure 4: The Theory Editor

page is a pretty print view of the theory.

3.3 Add a Type Parameter

Type parameters in a theory specify the types on which new definitions and rules
may be polymorphic. For instance, a theory of sequences can be polymorphic
on one type and that is the type of elements it may hold.

Type parameters are similar in nature to carrier sets in contexts. To create

a new type parameter, click on button under the Type Parameters section of
the structured editor, and specify the name of the type parameter (see figure 5).

Figure 5: Type Parameters

Type parameters are expected to be a legal Event-B identifier. For
example, 2ident is not a legal identifier.

As a convention, type parameters are specified as upper case strings

6



(same as context’s carrier sets).

3.4 Create an Operator Definition

Event-B mathematical language has many useful operators. Examples include
cardinality operator card, the finiteness predicate operator finite and the func-
tion application .(.). Other useful operators can be defined using the Theory
plug-in. Figure 6 shows a definition of a sequence operator.

Figure 6: Sequence Operator Definition

Note the numbering in figure 6. The following explains each part of the
definition:

1. Syntax Symbol: this specifies the syntax token that will be reserved for
the new operator (sequence in our example). It should not clash with any
previously defined symbol in the mathematical language available to the
theory.

2. Syntactic Class: this specifies whether the new operator is an expression
operator or a predicate operator. For example, the cardinality operator
card is an expression operator of integer type, and the finiteness operator
finite is a predicate operator. In our case, the sequence operator is an
expression operator. The button can be toggled off if a predicate operator
is required instead.

3. Notation: this specifies whether the symbols is a prefix or an infix opera-
tor. In the existing mathematical language, + is an infix operator whereas
partition is a prefix predicate operator. In our example, the sequence op-
erator is specified as prefix.

4. Associativity: this specifies whether the operator is associative. Note
that this has semantic implications, and as such a proof obligation is
generated to check the associativity property.

5. Commutativity: this specifies whether the operator is commutative.
Note that this has semantic implications, and as such a proof obligation
is generated to check the commutativity property.

7



6. Operator Arguments: an operator may have a number of arguments
(all of which may be expressions).

7. Argument Identifier: this specifies the name of the argument of the
operator. It has to be a legal Event-B identifier (similar to carrier sets,
constant, variables etc.).

8. Argument Type: this specifies the type of the argument. In our case,
the sequence operator takes a set of type A. Since A is a type parameter,
the sequence is polymorphic.

9. Direct Definition: this provides the direct definition of the operator.
In our case (see the red-boxed field), it asserts that sequences are total
functions from a contiguous integer range starting at 1 to the set a the
argument of the operator seq.

• Only operators that take two arguments of the same type can be tagged
as commutative. Of course, then, one has to prove the mathematical
property.

• An operator can be tagged as being associative if it satisfies the three
conditions: (1) it is an expression operator, (2) it takes two (or more)
arguments of the same type, (3) the type of the operator is the same as
that of its arguments. Of course, then, one has to prove the mathematical
property.

• Operators that are tagged associative have to be tagged as infix as well.

• The argument type can be a type or a set expression. If the argument
type is a set expression, then the type of the argument is inferred. Fur-
thermore, the additional restriction (i.e., that the argument belongs to a
set expression) is added as a well-definedness condition for the operator.

• As a convention, names of operators should be lower case.

• As a convention, names of operator arguments should be lower case.

The operator in figure 7 defines size for sequences.
This definition asserts that the operator seqSize takes one argument of type

Z↔ A. This definition, also, triggers a proof obligation to prove the strength of
the well-definedness condition provided. Namely, one has to prove that ∀s · s ∈
seq(A) =⇒ finite(s). We leave this as an exercise to the reader.

Figure 8 is a definition of a predicate operator.
The definition of seqIsEmpty does not trigger any proof obligation for well-

definedness strength. This is due to the fact that the corresponding condition
is a trivial predicate, namely: ∀s · s ∈ seq(A) =⇒ s ∈ seq(A).

The head operator on sequences can be defined as in figure 9.

8



Figure 7: Sequence Size Operator Definition

Figure 8: A Predicate Operator Definition

Figure 9: Sequence Head Operator Definition

Figure 10 shows the well-definedness strength proof obligation corresponding
to the previous definition of seqHead.

9



Figure 10: Sequence Head WD Strength PO

As a summary, have a look at figure 11 which is taken from the HTML view
of our theory.

Figure 11: Various Sequence Operators

10



The proof obligations associated with an operator definition are the follow-
ing:

1. ./Op-WD operator well-definedness strength if a well-definedness condi-
tion is explicitly specified.

2. ./Op-COMMUT the commutativity proof obligation, generated if the
operator is tagged as commutative.

3. ./Op-ASSOC the associativity proof obligation, generated if the operator
is tagged as associative.

3.5 Specify a Polymorphic Theorem

A polymorphic theorem is no different, in principle, from theorems defined in
contexts and machines. The Theory plug-in, however, provides facilities to
instantiate and use these theorems in proofs. See the example in figure 12.

Figure 12: Sequence Finiteness Theorem

The previous theorem articulates the fact the sequences as specified in our
example are finite. As with theorems in contexts and machines, you have to
prove validity and well-definedness of the theorem. The proof obligations asso-
ciated with a theorem are the following:

1. ./S-THM the validity proof obligation.

2. ./WD-THM the well-definedness proof obligation.

Figure 13 shows other theorems that can be defined in relation to our theory
of sequences so far:

Figure 13: Sequence Theorems

A theorem can be instantiated (e.g., in the previous example, the type
parameter A can be substituted with a type expression that is acceptable in
the context of the sequent under consideration). We will later show how this is
achieved.

11



3.6 Specify an Inference Rule

Inference rules are proof rules that can be used to: (1) infer new hypotheses in
a proof, or (2) split the goal into sub-goals, or (3) discharge a proof obligation.
The general structure of an inference rule is as follows:

Given

G0, ..., Gn

Infer

I

where each of G0, ..., Gn and I is an Event-B predicate. The above inference
rule can be read in the following two ways : ”given conditions G0, ..., Gn one
can infer I”, and ”one can prove I, if one can prove each of G0, ..., Gn”.

Inference rules can be defined as part of a block of ”Proof Rules”. Each
proof rules block may contain a number of metavariables, rewrite rules and in-
ference rules, see figure 14. To create a rules block, under the heading ”PROOF

RULES” in the structured editor, press .

Figure 14: Proof Rules Block

Metavariables define the variables used to specify proof rules. Considering
figure 15, each metavariable has a name and a type. For our example, we need
one metavariable s.

Figure 15: Defining a Metavariable

The example in figure 16 shows an inference rule concerning finiteness of
sequences:

The applicability of a proof rule indicates whether the rule should be applied
automatically or interactively. The description provides a human-readable view
of the rule. The description provided will be the tool tip for the rule in the

12



Figure 16: Sequence Finiteness Inference Rule

proof UI. The inference rule in figure 17 is an automatic rule that states that
the tail of a non-empty sequence is a sequence.

Figure 17: Sequence Tail Inference Rule

13



4 Scoping, Colour coding and Using of Theories

A theorypath is a means to introduce the deployed theories in a project scope.
In order to use a math extension, defined in a theory, in a project scope:

1. Deploy the theory A theory can be deployed by a pop-up menu , by
right-clicking on the theory, figure 18. .

Figure 18: Deploy Theory Button in Event-B Explorer

2. Import the deployed theory in a theorypath , which is defined in
the project scope. By clicking the button , a wizard that enables the
creation of a new theorypath is initiated (See figure 19).

Figure 19: New Theorypath Button in Event-B Explorer

Colour Coding: A theory is created white , after deploying it turns to
green . When a deployed green theory is modified, it turns to amber ,
indicating that the deployed version is different to the developing version.

• White : New theory: the theory is new and has not been deployed yet.
(such a theory is not accessible to be imported either in another theory or
a theorypath)

• Green : Deployed updated theory: the theory is deployed and updated.

• Amber : Deployed out-dated theory: the theory is modified after de-
ployment; the deployed version of the theory is not sync with the current
state of the theory.

14



• A machine/context accesses (local/global) theories imported directly or
indirectly by a theorypath within the same project as the machine/context.

• A theorypath can imports deployed (local/global) theories.

• A theory can import deployed (local/global) theories.

• A local theory in a project scope is a theory defined inside a project;
Whereas a global theory is a theory defined in a separated project.

• As illustrated in figure 20, if theory T1 in Prj1 imports theory T2 from
Prj2, and theory T1 is imported in a theorypath created in the project
Prj3 ; Then T1 is directly and T2 is indirectly accessible in the Prj3 scope.

Figure 20: Accessibility of Theories

15


	Motivation
	Capabilities
	Quick Start
	Install Theory Plug-in
	Create A New Theory
	Add a Type Parameter
	Create an Operator Definition
	Specify a Polymorphic Theorem
	Specify an Inference Rule

	Scoping, Colour coding and Using of Theories

