Practical Theory Extension

Asieh Salehil, Michael Butler?, Jean-Raymond Abrial?

University of Southampton?
Marseille?

5th Rodin Workshop
2"d June 2014, Toulouse

UNIVERSITY OF

> Advance Southampton

Tutorial Overview

 Partl, Asieh Salehi
— Motivation
— Introducing Theory Extension capabilities
— Simple demo of the Theory plug-in

 Partll, Michael Butler
— Inductive definitions and proofs
— Axiomatic definitions
— Wrapping compound structures in data types
— Hierarchical file example

* Partlll, Jean-Raymond Abrial

— Well-Definedness, Fixpoint, Closure, Computation, Well-Ordering
Theorem, Cantor-Bernstein Theorem, Axiomatisation of Real-Numbers

Motivation:
Mathematical theories in Event-B

 Core Rodin supports rich mathematical theories:
— integers, sets, relations, functions ...

* But many problems require additional mathematical structures
(e.g., lists, trees, graphs, reals)

 These structures could be defined axiomatically (as an Event-B
context), but

— polymorphism is not supported
— no direct way to extend the provers of Rodin

— no direct support for ensuring soundness of new operator
definitions and proof rules

Theory extension plug-in

e Allow users to define new mathematical
operators and data types

* Allow users to add proof rules to Rodin prover
— Rules may be used interactively
— Rules may be added to automated tactics

e Generate soundness POs for new definitions and
proof rules

Forms of definition

* Data types
— Inductive polymorphic data types (e.g., lists, trees, ...)
— Axiomatic types (e.g., reals)

* Polymorphic operator definitions
— Direct definitions (e.g., sequences as integer functions)
— Recursive definitions (e.g., operators on lists, trees, ...)
— Axiomatic definitions (e.g., axioms of real arithmetic)

Sequence Theory

THEORY
Seq // A theory of sequences defined as finite partial functions.
TYPE PARAMETERS
A
OPERATORS
*seq : seq(a : P(A)) EXPRESSION PREFIX // The sequence operato
direct definition
seq(a : P(A)) = {n, f - neNA f e l.n—a | f} // a set of finite
*seqSize : seqSize(s : seq(A)) EXPRESSION PREFIX // size of :

direct definition
seqSize(s : seq(A)) = card(s)

-seqIsEmpty : seqlsEmpty(s : Z«>A) PREDICATE PREFIX // predi

// wheth
direct definition

seqIsEmpty(s : Z«A) = seqSize(s)=0

semptySeq : emptySeq EXPRESSION PREFIX // empty sequence
direct definition

emptySeq= @ 8 P(A)

*seqHead : seqgHead(s : seq(A)) EXPRESSION PREFIX // the head
well-definedness condition

- seqlsEmpty(s)
direct definition

seqHead(s : seq(A)) = s(1)

Forms of proof rule

Theorems (most general form)

— Theorems can be instantiated manually in proof giving
rise to additional hypotheses

Conditional rewrites:
lhs = rhs1, if C1
lhs = rhs2, if C2
— Can be used manually or automatically
Inference rules:
— Given P1, P2, ... InferQ

Induction: available for inductive types

Demo
Proof rules for Sequences

< PROOF RULES @&

< [m] @ |sequences Rules : [/
<> Metavariables &

< Rewrite Rules &

<> Inference Rules &

Job Queue Machine

MACHINE
JobQueue
SEES
C1
VARIABLES
queue
job
INVARIANTS
invl: job € JOB
inv2 : queue € seq(job) //elements of queue are from job
EVENTS
INITIALISATION:
THEN
o actl: queue = emptySeq»
O act2: job =2
END

Soundness POs for proof rules

Theorems:

— Soundness PO: theorem provable (from
definitions and existing theorems)

Conditional rewrites:
— Soundness PO: C1 = |lhs=rhs], ...

Inference rules:
— Soundness PO: P1 AP2A ..= Q

Proof of seq monotonic

* Demo

Inductive datatypes

* Peano
e |ijst
* Trees

Visibility and Scoping:
Deploying a theory

* An individual theory consist of a collection of
definitions and proof rules

* The first step to make the definitions and proof
rules available to use is deploying a theory.

Visibility and Scoping:
Importing other theories

A theory can import other deployed theories

Hierarchy of theories:

— Importing theory inherits definitions from the
imported theory

— Importing theory can extend the parent definitions

— Conflicting validation applied (e.g., same name
elements is not allowed)

A theory can import a local or global theory

Visibility and Scoping:
Theory Path

* Atheorypath {8 is a tool to introduce the
deployed theories in a project scope

* A theorypath can imports deployed (local/
global) theories

* A machine/context accesses (local/global)
theories imported directly or indirectly by a
theorypath within the same project as the
machine/context

Visibility and Scoping:

Example
P1 P2 P3

TheoryPath 1 T2 T3
imports import

* P1.T1

* P3.T4 T4

T1 .

import

Theories T1, T2, T3 and T4 are visible in P1 via TheoryPath

Visibility and Scoping:
Colour Coding

* White [T :anew and un-deployed theory

— A white theory is not accessible to be imported
either in another theory or in a theorypath

* Green T :adeployed updated theory
— A green theory is deployed and updated.
 Amber T :a deployed out-dated theory

— an amber theory is modified after deployment; the
deployed version of the theory is not sync with the
current state of the theory.

Tree structured file store

Objects can be files or directories
Unique root object

Each object has a parent (except root)
No loops in the structure

Each object reachable from root

Operations:

— create object,

— add object,

— delete object (incl directory),
— move object (incl directory),
— copy object (incl directory)

No-loop property

1. @invl: parent € objects \ {root} — objects
2. @inv2: parent* N id={}

Invariant 2 is not easy to work with.
Instead we use Well-foundedness:

wf(R) == Vs.sCR?s] = s={}
3. @inv3: wf(parent)

inv2 becomes a theorem that follows from inv3.

Graph based tree theory

Tree structure represented by
— Set of nodes n
— Root node r
— Parent function p
Wrap these as a data type (polymorphic on nodes)
— TreeType(nodes:n, root:r, parent:p)
Define a validity predicate
— ValidTree(t) ==
parent injective on nodes
no loops in parent
root is the ancestor of all other nodes
Define operators on tree structures
— addChild, addSubtree, ...
Use theory to specify a machine model of a file system

Concluding

* Summary:

— Added support for user-defined theories and proof
rules in seamless way with soundness POs

* Usage scenarios:
1. Types and operators identified and defined
2. Basic proof rules identified and proved
* soundness POs can uncover errors in definitions and rules

3. Usage of new theories in models identifies need for
additional proof rules
* These are added to the theories

