Practical Theory Extension

Asieh Salehi¹, Michael Butler¹, Jean-Raymond Abrial²
University of Southampton¹
Marseille²

5th Rodin Workshop 2nd June 2014, Toulouse

Tutorial Overview

- Part I, Asieh Salehi
 - Motivation
 - Introducing Theory Extension capabilities
 - Simple demo of the Theory plug-in
- Part II, Michael Butler
 - Inductive definitions and proofs
 - Axiomatic definitions
 - Wrapping compound structures in data types
 - Hierarchical file example
- Part III, Jean-Raymond Abrial
 - Well-Definedness, Fixpoint, Closure, Computation, Well-Ordering
 Theorem, Cantor-Bernstein Theorem, Axiomatisation of Real-Numbers

Motivation: Mathematical theories in Event-B

- Core Rodin supports rich mathematical theories:
 - integers, sets, relations, functions ...
- But many problems require additional mathematical structures (e.g., lists, trees, graphs, reals)
- These structures could be defined axiomatically (as an Event-B context), but
 - polymorphism is not supported
 - no direct way to extend the provers of Rodin
 - no direct support for ensuring soundness of new operator definitions and proof rules

Theory extension plug-in

- Allow users to define new mathematical operators and data types
- Allow users to add proof rules to Rodin prover
 - Rules may be used interactively
 - Rules may be added to automated tactics
- Generate soundness POs for new definitions and proof rules

Forms of definition

Data types

- Inductive polymorphic data types (e.g., lists, trees, ...)
- Axiomatic types (e.g., reals)

Polymorphic operator definitions

- Direct definitions (e.g., sequences as integer functions)
- Recursive definitions (e.g., operators on lists, trees, ...)
- Axiomatic definitions (e.g., axioms of real arithmetic)

Sequence Theory

```
THFORY
  Seq // A theory of sequences defined as finite partial functions.
TYPE PARAMETERS
  Α
OPERATORS
  •seq : seq(a : ℙ(A)) EXPRESSION PREFIX // The sequence operato
  direct definition
   seq(a : P(A)) \triangleq \{n, f \cdot n \in \mathbb{N} \land f \in 1..n \rightarrow a \mid f\} // a set of finite
  •seqSize : seqSize(s : seq(A)) EXPRESSION PREFIX // size of s
  direct definition
   seqSize(s : seq(A)) \triangleq card(s)
                                                                      // predi
  •seqIsEmpty : seqIsEmpty(s : Z↔A) PREDICATE PREFIX
                                                                           whethe
  direct definition
   seqIsEmpty(s : \mathbb{Z} \leftrightarrow A) \triangleq seqSize(s) = 0
  •emptySeq : emptySeq EXPRESSION PREFIX // empty sequence
  direct definition
   emptySeq≜ ø % P(A)
                                                    PREFIX // the head
  •seqHead : seqHead(s : seq(A)) EXPRESSION
  well-definedness condition
   ¬ seqIsEmpty(s)
  direct definition
   seqHead(s : seq(A)) \triangleq s(1)
```

Forms of proof rule

- Theorems (most general form)
 - Theorems can be instantiated manually in proof giving rise to additional hypotheses
- Conditional rewrites:

```
lhs = rhs1, if C1
lhs = rhs2, if C2
```

- Can be used manually or automatically
- Inference rules:
 - Given P1, P2, ... Infer Q
- Induction: available for inductive types

Demo Proof rules for Sequences

→ PR00F RULES ◆	
	: //
→ Metavariables →	
→ Rewrite Rules ◆	

Job Queue Machine

```
MACHINE
    JobQueue
SEES
     C1
VARIABLES
    queue
    job
INVARIANTS
    inv1: job \subseteq JOB
    inv2: queue \subseteq seq(job) // elements of queue are from job
EVENTS
    INITIALISATION:
    THFN
        act1: queue = emptySeq >
        act2: job = \emptyset >
    0
    END
```

Soundness POs for proof rules

Theorems:

- Soundness PO: theorem provable (from definitions and existing theorems)
- Conditional rewrites:
 - Soundness PO: C1 \Rightarrow lhs = rhs1, ...
- Inference rules:
 - Soundness PO: P1 \land P2 \land ... \Rightarrow Q

Proof of seq monotonic

Demo

Inductive datatypes

- Peano
- List
- Trees

Visibility and Scoping: Deploying a theory

- An individual theory consist of a collection of definitions and proof rules
- The first step to make the definitions and proof rules available to use is deploying a theory.

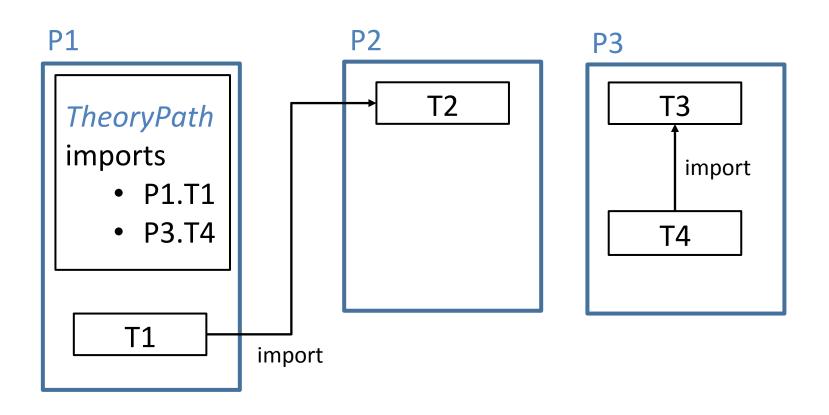
Visibility and Scoping: Importing other theories

- A theory can import other deployed theories
- Hierarchy of theories:
 - Importing theory inherits definitions from the imported theory
 - Importing theory can extend the parent definitions
 - Conflicting validation applied (e.g., same name elements is not allowed)
- A theory can import a local or global theory

Visibility and Scoping: Theory Path

- A theorypath is a tool to introduce the deployed theories in a project scope
- A theorypath can imports deployed (local/ global) theories
- A machine/context accesses (local/global) theories imported directly or indirectly by a theorypath within the same project as the machine/context

Visibility and Scoping: Example



Theories T1, T2, T3 and T4 are visible in P1 via TheoryPath

Visibility and Scoping: Colour Coding

- White T: a new and un-deployed theory
 - A white theory is not accessible to be imported either in another theory or in a theorypath
- Green : a deployed updated theory
 - A green theory is deployed and updated.
- Amber : a deployed out-dated theory
 - an amber theory is modified after deployment; the deployed version of the theory is not sync with the current state of the theory.

Tree structured file store

- Objects can be files or directories
- Unique root object
- Each object has a parent (except root)
- No loops in the structure
- Each object reachable from root
- Operations:
 - create object,
 - add object,
 - delete object (incl directory),
 - move object (incl directory),
 - copy object (incl directory)

No-loop property

- 1. @inv1: parent \in objects $\setminus \{\text{root}\} \rightarrow \text{objects}$
- 2. @inv2: parent* ∩ id = { }

Invariant 2 is not easy to work with. Instead we use *Well-foundedness*:

$$wf(R) == \forall s.s \subseteq R^{-1}[s] \Rightarrow s = \{\}$$

3. @inv3: wf(parent)

inv2 becomes a theorem that follows from inv3.

Graph based tree theory

- Tree structure represented by
 - Set of nodes n
 - Root node r
 - Parent function p
- Wrap these as a data type (polymorphic on nodes)
 - TreeType(nodes:n, root:r, parent:p)
- Define a validity predicate
 - ValidTree(t) ==
 parent injective on nodes
 no loops in parent
 root is the ancestor of all other nodes
- Define operators on tree structures
 - addChild, addSubtree, ...
- Use theory to specify a machine model of a file system

Concluding

- Summary:
 - Added support for user-defined theories and proof rules in seamless way with soundness POs
- Usage scenarios:
 - 1. Types and operators identified and defined
 - Basic proof rules identified and proved
 - soundness POs can uncover errors in definitions and rules
 - 3. Usage of new theories in models identifies need for additional proof rules
 - These are added to the theories