
A (Proposal for a) Rodin Plugin for Timed

Machine

Joris Rehm

LORIA - Nancy Université

July 17, 2009

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 1/21

Context

I Real-time systems: worst case computation time must be
under some duration. Example: a brake by wire system,
the systems is not aware of time but must react fast.
(See real-time controler or OS, scheduling)

I Timed systems: the system itself use time (quantitative
temporal) properties. Example: the 2-slot Simpson
algorithm use delays to ensure correct access to a shared
memory. Or time is a part of the specification (example:
pacemaker).

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 2/21

Context 2

I The goal: be able to verify timed properties in the
Event-B world.

I Few (or no) change to the formalism. We will use a
refinement pattern to introduce the model of time.

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 3/21

Time pattern

I I tried many explicit encoding of time in Event-B. (As the
pattern is applied many time in a model, it can have
great consequence over the proof complexity)

I Finally choose to reason about the timed elapsed since
the last triggering of an event.

I Operator S(e), “the duration elapsed since last run of the
event e”

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 4/21

The plug-in requirements

I The user add timed invariant involving the operator S .

I The user can constraint an event f by adding lower
bounds on the duration elapsed since another event f run
(X ≤ S(e))

I The user can constraint an event f by adding upper
bounds on the duration elapsed since another event f run
(S(e) ≤ Y)

I (lower and upper bounds are really different)

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 5/21

The plug-in requirements

I The user can see and edit a timed machine.

I The user can save his timed machine.

I The plug-in can apply the time pattern and generate a
normal machine (the proof is carried on this machine).

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 6/21

(Very Simple) Example : light timer

lo=FALSE lo=TRUEinitialisation

on
off

on

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 7/21

Untimed example

on =̂
Begin

act1: lo := TRUE
End

off =̂
When

grd1: lo = TRUE
Then

act1: lo := FALSE
End

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 8/21

Refinement: adding time

off =̂
When

grd1: lo = TRUE
Lower Bound

lb off: c − d ≤ S(on)
Upper Bound

ub off: S(on) ≤ c + d
Then

act1: lo := FALSE
End

TIMED INVARIANTS
ti1: lo = TRUE ⇒ S(on) ≤ c + d
ti2: lo = FALSE ⇒ c − d ≤ S(on)

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 9/21

Data refinement

I A total function f with a constant finite set E as domain
can be refined to several (card(E)) variables.

I f ∈ {a, b, c}→ F

I we can consider variables f a, f b, f c instead of expression
f (a), f (b), f (c)

I Therefore we have two options for encoding the operator
S : with a function s(a), s(b), . . . or with a set of variable
s a, s b,

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 10/21

The generated machine

on =̂
Begin

act1: lo := TRUE
act2: s on := 0

End

off =̂
When

grd1: lo = TRUE
lb off: c − d ≤ s on

Then
act1: lo := FALSE

End

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 11/21

The generated machine

tic =̂
Any shift
Where

grd1: 0 < shift
ub off: lo = TRUE

⇒s on + shift ≤ c + d
Then

act1: s on := s on + shift
End

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 12/21

The general pattern

reset =̂
Any e
Where

grd1: e ∈ E
Then

act1: s(e) := 0
End

tic =̂
Any shift
Where

grd1: 0 < shift
Then

act1: s := {e ·e ∈ E |e 7→ s(e) + shift}
End

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 13/21

Data refinement

tic =̂
Any shift
Where

grd1: 0 < shift
Then

act1: s a := s a + shift
act2: s b := s b + shift
act3: . . .

End

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 14/21

Only a matter of taste?

I In the general case, to increment the variable in the tic
event we can define an add function in a context.

I Which one do you prefer, and which one is better
(currently) for Rodin?

I Wishlist item for the wiki: more rewriting rules for that
kind of expressions

typ: add ∈ Z→ (Z→ Z)
axm1: add = (λa·a ∈ Z|(λb ·b ∈ Z|a + b))
axm2: add = {a·a ∈ Z|a 7→ {b ·b ∈ Z|b 7→ a + b}}
axm3: ∀a, b, c ·a ∈ Z ∧ b ∈ Z ∧ c ∈ Z⇒

(a 7→ b ∈ add(c)⇔ b = a + c)
axm4: ∀a, b ·a ∈ Z ∧ b ∈ Z⇒ (add(a)(b) = a + b)

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 15/21

In case of distributed system

I Let’s take a set of distributed devices, for example trains
on the rail network or devices sending messages on a
network.

I Typically in Event-B, all distributed entities share the
same set of events and a parameter of the event give the
involved device.

I Therefore for the operator S we need an additional
parameter in order to refer to the last triggering of a
particular device. For example S(on(x)) with x a device.

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 16/21

In case of distributed system

I In this case it’s not possible to use data refinement shown
before (as the number of devices is unknown)

I The pattern should be a little bit refined to represent the
S operator with parameter.

I and the plug-in could manage that (probably not in first
version)

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 17/21

What is a pattern (for us)?

m0

m1

P

I It’s a double refinement (with no
shared variables)

I The pattern is adapted (elements are
replicated and renamed) and inserted
into the studied model to make a new
refinement

I The plug-in must ensure that the usage
of the pattern is really a refinement.

I (It may be useful to extend rodin for
modeling the extra refinement link
between m1 and P.)

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 18/21

The generation procedure

I The plug-in must apply the pattern with our without the
data simplification, as requested by the user (and if it’s
possible).

I For lower bound or invariant just replace the operator S
by the encoding in normal variable.

I Each event that appears in S must reset the counter to
zero.

I The progression of the time is encoded in a tic event

I For upper-bound S(e) ≤ X in a event f , the following
guard must be added to the tic event:

GUARD(f)⇒ S(e) + shift ≤ X

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 19/21

Arithmetic

I High needs of better arithmetic provers

I The real numbers can be useful to have dense time model

I (actually it’s simpler to do automated proofs on real
numbers than on integer)

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 20/21

Conclusion

I It’s quite fascinating to see that with only a few changes
we can have timed machine.

I That means that refinement PO and invariant PO are
enough powerful to encode (nicely) a model of time.

I Hope to complete the plugin’s implementation as soon as
possible (thanks for the nice tutorial).

Joris Rehm A (Proposal for a) Rodin Plugin for Timed Machine 21/21

