
Tasking Event-B Translations

A. Edmunds

July 20, 2011

1 Tasking Event-B Machines to IL1

Source Target
Tasking Machine Task (DataType)
AutoTask Machine Task (non-DataType / only run on start-up)
Shared Machine Protected Object (DataType)
Environ Machine Model of the Environment

In our approach it is usually the case that the Events of Tasking and Shared
machines map to Subroutine declarations, exceptions to this will be described
at the appropriate time. Tasks have a TaskBody construct in which the task
behaviour is defined; EventWrappers may appear in the task body to con-
tain Event synchronizations. In a synchronization (SynchEvents) an event
is either ‘local’ or ‘remote’ with respect to a task. There are restrictions on
which events may have guards. Remote events, used in looping and branching
constructs, should not be guarded. Local events, used in the EventWrapper
construct, should also not be guarded. Synchronization occurs between a pair
of events; one from a Tasking Machine, and one from a Shared Machine or
Environ Machine. No synchronization occurs between Tasking Machines.
The abstract syntax follows:

TaskBody ::= Seq | Branch | Do | EventWrapper | Output

Seq ::= TaskBody TaskBody

Branch ::= Body [SubBranch] Else

SubBranch ::= Body [SubBranch]

Else ::= EventWrapper

Body ::= EventWrapper

Do ::= Body [Finally]

1

Finally ::= EventWrapper

Output ::= Text Variable

EventWrapper ::= SynchEvents

SynchEvents ::= Local Remote

Local ::= Event

Remote ::= Event

2 Synchronized Local/Remote Events

To represent the combined updates on local and remote machines we intro-
duce synchronized event composition. The synchronization of the two events
is equivalent to a single atomic event, with the guards and actions of the in-
dividual events merged. We can write the guards and actions of the events as
guarded commands [1]. The general case of event synchronization is shown in
Equation (1) where a local event el is written as gl → al, and gl and al are local
guards and actions. The remote event er is written as gr → ar, where gr and
ar are remote guards and actions. The synchronization of one local and one
remote event uses the event composition operator ‖e. The actions describing
state updates are composed with the parallel update operator ‖.

gl → al ‖e gr → ar , gl ∧ gr → al ‖ ar (1)

So we can aslo write the combined event ec as

ec , el ‖e er (2)

In version1 of the tasking language local and remote machines do not share state,
the variables of the guards and actions are disjoint. We can write the individual
assignments in the following way, el, x1, .., xj := y1 .. yj and the assignments of
er, xj+1, .., xn := yj+1 .. yn. When composed in parallel we have,

ec , gl ∧ gr → x1, .., xn := y1 .. yn (3)

When events are used in an EventWrapper construct, the implementation maps
to a blocking call. In this case it makes no sense to have a guard on the local
event since the calling task should not block itself. So we only guard the remote
event. We restrict the guarded compound event eg as follows,

eg = al ‖e gr → ar (4)

When we use branch or loop constructs, we restrict the use of guards to the

2

local event only. We prohibit the use of guards in remote events to avoid com-
plications due to interleaving with other tasks. Our previous work, with OCB,
had a similar constraint for the same reason; and the restriction also allows the
developer to reason about the effects in a clear way (problem with false else
guards!!). This also means that it makes no sense to write a branch without a
guarded local event, since the remote event has no guards, if(true) then a endif
is simply equivalent to the update a.
A compound branching event eb and looping event ew is restricted as follows,

eb = ew = gl → al ‖e ar (5)

If one of the events, either local or remote, is not specified in the control con-
struct then the missing event is interpreted as,

> → skip (6)

2.1 Tasking - Parallel Events to IL1

We describe here the mapping between Tasking Event-B and the IL1 meta-
model. The Control constructs populate the TaskBody of the source Tasking Machine,
and a similarly named construct is used to populate the target TaskBody.

Control < Control >T

Control1 ; Control2 < Control1 >T ; < Control2 > T

EventWrapper es call el(); call target.er()
where es = el ‖e er In the task: subroutine el(){ al; }

el = al, and er = gr → ar In Protected:
subroutine er()when(gr){ ar; }

L: DO ew OD In task body:
where while(gl){
ew = gl → al ‖e er call er(); al;

}

In Protected:
subroutine er(){ ar; }

L: DO e1w FINALLY e2w OD In task body:
eiw = gil → ail ‖e eir while(g1l){
where i ∈ 1 .. 2 call e1r(); a1l;

}

call e2r(); a2l;

In Protected:
subroutine e1r(){ a1r; }

subroutine e2r(){ a2r; }

3

Control IL1
In task body:

L: IF e1b ENDIF [if(g1l){ body }]

[ELSEIF eib ENDELSEIF].. [elseif(gil){ body }]..
[ELSE enb ENDELSE] [else{ body }]

i ∈ 1 .. n
eib = gil → ail ‖e eir

body ,
call eir(); ail

and in Protected:
subroutine eir(){ air }

4

2.2 Tasking - Parallel Events to Event-B

2.2.1 Using Labelled Clauses

Control Event-B

Control1 ; Control2

L: EventWrapper ec el ,
WHEN pct = L

ec , al ‖e gr → ar THEN al ‖ pct := next(L)
END

where next(L) is a function returning er ,
the next program counter label. WHEN gr

THEN ar
END

L: DO ew OD elwhile ,
ew = gl → al ‖e ar WHEN gl ∧ pct = L

THEN al
END

erwhile ,
where next(L) is a function returning WHEN >
the next program counter label. THEN ar

END

elwhilefalse ,
WHEN ¬gl ∧ pct = L
THEN pct := next(L)
END

L: DO e1w FINALLY e2w OD elwhile ,
where i ∈ 1 .. 2 WHEN g1l ∧ pct = L
ei = gil → ail ‖e air THEN a1l

END

where next(L) is a function returning erwhile ,
the next program counter label. WHEN >

THEN a1r
END

elfinally ,
WHEN ¬g1l ∧ g2l ∧ pct = L
THEN a2l ‖ pct := next(L)
END

erfinally ,
WHEN >
THEN a2r
END

5

Control Event-B

L: IF e1b ENDIF elif ,
[ELSEIF eib ENDELSEIF].. WHEN g1l ∧ pct = L
[ELSE enb ENDELSE] THEN a1l ‖ pct := next(L)

where i ∈ 1 .. n END

eib = gil → ail ‖e air erif ,
WHEN >
THEN a1r
END

where next(L) is a function returning elelseif i ,
the next program counter label. WHEN

∧
¬gl1..(i−1) ∧ gil ∧ pct = L

THEN ail ‖ pct := next(L)
END

erelseif i ,
WHEN >
THEN air
END

elelse i ,
WHEN

∧
¬g1..(i−1)l ∧ pct = L

THEN anl ‖ pct := next(L)
END

erelse i ,
WHEN >
THEN anr
END

2.2.2 Without Labelled Clauses

In the following table we use el to indicate an event that is local to a task, and
er to indicate a (remote) event belonging to a shared machine.

6

Control Event-B

Control1 ; Control2 Control1 ; Control2

EventWrapper e el ,
WHEN en = TRUE

e , al ‖e gr → ar, THEN al ‖ en := FALSE ‖
and en is a representation of the next(en) := TRUE
program counter derived from the event name. END

Where next(en) is a function er ,
returning the next enabled counter. WHEN gr

THEN ar
END

DO e OD elwhile ,
WHEN gl ∧ en = TRUE

e = gl → al ‖e ar , THEN al
and en is a representation of the END

program counter derived from the event name. erwhile ,
Where next(en) is a function WHEN >
returning the next enabled counter. THEN ar

END

elfinally ,
WHEN ¬gl ∧ en = TRUE
THEN en := FALSE ‖

next(en) := TRUE
END

DO e1 FINALLY e2 OD elwhile ,
WHEN g1l ∧ en = TRUE

i ∈ 1..2 THEN a1l
ei = gil → ail ‖e air, END

and en is a representation of the erwhile ,
program counter derived from the event name. WHEN >

THEN a1r
Where next(en) is a function END
returning the next enabled counter.

elfinally ,
WHEN ¬g1l ∧ en = TRUE
THEN a2l ‖ en := FALSE ‖

next(en) := TRUE
END

erfinally ,
WHEN >
THEN a2r
END

7

Control Event-B

L: IF e1 ENDIF elif ,
[ELSEIF ei ENDELSEIF].. WHEN g1l ∧ en = TRUE
[ELSE en ENDELSE] THEN a1l ‖ en := FALSE

next(en) := TRUE
i ∈ 1..n END

ei = gil → ail ‖e air, erif ,
and en is a representation of the WHEN >
program counter derived from the THEN a1r
event name. END

Where next(en) is a function elelseif i ,
returning the next enabled counter. WHEN

∧
¬gl1..(i−1) ∧ gil ∧

en = TRUE
THEN ail ‖ next(en) := TRUE‖

en := FALSE
END

erelseif i ,
WHEN >
THEN air
END

elelse i ,
WHEN

∧
¬g1..(n−1)l ∧

en = TRUE
THEN anl ‖ next(en) := TRUE‖

en := FALSE
END

erelse i ,
WHEN >
THEN anr
END

3 Synchronizing Events using the ProcedureSynch
Construct

In a ProcedureSynch we have local and remote events el and er respectively.
We have a local event with an ordered set of parameters P and variables V . A
local event can synchronize with a remote event with ordered sets of Parameters
Q and variables W . The synchronization es can be written in the form of the
Guarded Command,

es , gl(P, V)→ al(P, V) ‖e gr(Q,W)→ ar(Q,W)

In the translation to the Common Language Model we find the guards and
actions play a roll in the direction of parameter passing see Table 1. In the table
we identify individual Parameters p ∈ P and q ∈ Q, and individual Variables

8

Event-B Direction Type
parameter p, where p = v out actual
parameter p where v := p in actual
parameter q, where q = w out formal
parameter q, where w := q in formal

Table 1: Parameters: Type and Direction from use in Guards and Actions

v ∈ V and w ∈ W . Remembering subscript l represents a task local event’s
guards and actions, and subscript r represents the remote event guards and
actions, occurring in a shared machine. As a general observation, outgoing
parameters appear only in event guards, and incoming parameters appear only
on the RHS of assignment actions.

4 Sensing and Actuation Events

We introduce a type of machine called an Environ Machine which models the
environment. The tasks of a development interact with the environment by
reading monitored variables (sensing) and setting controlled variables (actua-
tion). The monitored and controlled variables reside in the environment.

There are two approaches that we use to facilitate communication with the
environment. In the first case we use Memory Mapped IO using Addressed
Variables. We relate event parameters of sensing/actuating tasks to memory lo-
cations, Addressed Variables consist of a base b and location loc. This approach
is suitable for deployable code, and if we relate the monitored and controlled
variables of the environment to these memory locations we are also able to
simulate the environment using these addresses. We may also choose to ignore
Memory Mapped IO (the second case) and simply interact with the environment
using subroutine calls. In Ada, these are implemented using entry calls, from
the task to the environment. This approach may also be used to simulate the
environment, for instance, if the developer does not have the addresses available;
it may also be used to simulate calls to a device driver API. This approach gives
rise to the options summarized in the following table:

Generated Code Tasking Development
Tasks write to specific memory Extend task event parameters
addressed variables for deployment. with address variables.
Tasks and the Environment simulation Extend task event parameters and
interact through memory environ machine variables
addressed variables. with address variables.
Tasks and Environment simulation Use no address variables
interact using subroutine calls

In Tables 2, 3 and 4 we describe the translation between the tasking anno-
tations and the generated code. In the tables, the local event has parameters p

9

Tasking Event-B Translation
Actuating Local Evt: , Add Addressed Variable p to task,
with Parameter addr(b,loc) p, Var v, with base b and location loc.
and guard p = v Use p := v in s.
Actuating Remote Evt: Ignore environment.
with parameter q, Var w,
and action w := q.
Sensing Local Evt: Add Addressed Variable p to task,
with Parameter addr(b,loc) p, Var v, with base b and location loc.
and action v := p Use v := p in s.
Sensing Remote Evt: Ignore environment.
with Parameter q, Var w,
and guard q = w

Table 2: Deployment: Translation of Sensing/Actuation Parameters

Tasking Event-B Translation
Actuating Local Evt: Map v to an actualOut parameter.
with Parameter p, Var v,
and guard p = v.
Actuating Remote Evt: Map q to a formalIn parameter.
with Parameter q, Var w, Use w := q in s.
and action w := q.
Sensing Local Evt: Map v to an actualIn parameter.
with parameter p, Var v,
and action v := p.
Sensing Remote Evt: Map q to a formalOut parameter.
with parameter q, Var w, Use q := w in s.
and guard q = w.

Table 3: Simulation1: Sensing/Actuating with Subroutine Calls

and sensed/actuated variables v. A local event can synchronize with a remote
event, with parameters q , and monitored/controlled variables w. It can be seen
in the tables that an event, in a machine, usually maps to a subroutine s; but
is sometimes ignored since it is used for reference only. In the Tasking Event-B
approach we stipulate that parameter ordering is critical; we match parameters
of the local and remote events when we translate to the subroutine declaration
(signature) and call parameters. The subroutine signature contains the formal
parameters, and the subroutine call contains the actual parameters. Events
that interact with the environment are marked as either Sensing or Actuating,
so that the translator can take appropriate action.

10

Tasking Event-B Translation
Actuating Local Evt: Add Addressed Variable p to the task,
with Parameter addr(b,loc) p, Var v with base b and location loc.
and guard p = v. Use p := v in s.
Actuating Remote Evt: Add Addressed Variable w to Environ
with parameter addr(b,loc) q, Var w task, with base b and location loc.
and action w := q. Ignore event, i.e. no translation to s.
Sensing Local Evt: Add Addressed Variable p to task,
with parameter addr(b,loc) p, Var v, with base b and location loc.
and action v := p. Use v := p in s.
Sensing Remote Evt: Add Addressed Variable w to Environ
with parameter addr(b,loc) q, Var w, task, with base b and location loc.
and guard q = w. Ignore event, i.e. no translation to s.

Table 4: Environ Simulation2: Sensing/Actuating with Addressed Variables

4.1 The role of Synchronisation in Sensing and Actuation

We can write the specification of a sensing event synchronization in the style of
the Guarded Command Language, as follows:

gl(P, V)→ al(P, V) ‖e gr(Q,W)→ ar(Q,W)

We know that sensing/actuating synchronizations are atomic, and we map a
synchronization to a single subroutine in which either the environment vari-
ables are read or updated. We do not allow sensing and actuating in the same
event. We use the following notation: Tasks have ordered sets of Parameters P
and Variables V . The Environ machine has ordered sets of Parameters Q and
Variables W . Variables V are the sensed/actuated variables, Variables W are
the monitored/controlled variables. Event Parameters are paired (using order
of declaration) between the synchronized machines. When we write P = Q, we
mean that we have two ordered sets where n elements of P are paired with the
n elements of Q, such that, for each i ∈ 0 ..n−1, we have Pi = Qi. Therefore we
can substitute each element Pi for its paired value Qi and vice versa. V := P
is the simultaneous substitution of the paired elements in V and P .

In a task sensing event el we have,

V := P

Now, in the corresponding synchronised event er, from the guard, we have
W = Q. We know that P = Q from paired parameters, so P = W . Therefore,

V := W

This means that the monitored variable values W are assigned to the sensed
variables V .

11

In a task actuating event el we have,

V = P

and in the environment event er,

W := Q

We know that P = Q from paired parameters, so Q = V , and therefore,

W := V

This means that the values of the actuated variables V are assigned to the
controlled variables W .

4.2 Implementing Memory Mapped IO

Memory Mapped IO is specified in Tasking Event-B using Addressed Variables.
Addressed Variables provide a way of specifying a memory location; whenever
the variable is used in an expression, the value is retrieved from the specified
memory location. Local event el has an ordered set of Parameters P which are
mapped to an ordered set of memory locations M . When we write P = M we
mean that we have two ordered sets, where n elements of P are paired with
the n elements of M . For each i ∈ 0 .. n − 1, we have Pi = Mi. Therefore
we can substitute each element Pi for its paired value Mi. Variables W of the
Environ Machine are also paired with the corresponding memory locations M
in the same way. We write W = M and may substitute each Wi for Mi and
vice versa. We use the guards to relate the two as follows in the local sensing
event el,

V := P

From the address mapping we have P = M , so,

V := M

The values from M are assigned to the variable V .
That is all we are interested in for deployable code, but in a simulation using

Addressed Variables in the environment we additionally wish to show that the
memory locations M are updated. In an environment model we specify events
to manipulate the environment simulation. In an environment simulation some
variable W are updated using the following expression,

W := E(W,Q)

and from the address mapping we have W = M so,

M := E(W,Q)

These are the memory values M , read by the local sensing event el when per-
forming the update V := M .

12

specification (local update expanded) synch equivalent
a := w ‖ op(v , w) -
a := w ; op(v , w) YES

Table 5: actualIn Parameter Passing

specification (local update expanded) synch equivalent
v := E ‖ op(v, w) -
v := E ; op(v, w) NO

Table 6: actualOut Parameter Passing

5 IniValueSubstitutions for Parameter Passing

Re-use of actualIn parameters we have an operation with parameters, and Ex-
pression E ∈ T2,

operation op(in i ∈ T1, out j ∈ T2){
x ∈ T1;

x := i;

j := E

}

We use variables v and w as actual parameter with corresponding type, and
use these in a call,

op(v, w);

The synchronisation specification ‘text’ uses ‖e for parallel composition of
events. The sequential implementation of parallel specification is mapped left
to right, and can therefore lead to the same initial value problem that we have
to deal with when mapping parallel actions to sequential implementations.
In the current approach we generate sequences in the composition by expanding
the parallel composition from left to right. Therefore, in Table 5, actualIn
parameter processing is OK, since it is the initial value of w that is used in the
local assignment. The subsequent call results in a new value being assigned to
w. The synchronisation w := a is not permitted since w can only be written
once, and that occurs in the call, where w replaces the formalOut parameter.

The actualOut parameter in Table 6 needs intial Value substitution on entry
to subroutines where they are used. We can see that the sequential implementa-
tion does not correspond to the parallel semantics since v is updated, and then
used as the parameter value.

When considering formal parameters we substitute the formal the formal
parameters in expressions with actual parameters in Tables 7 and 8. In Table 7
we can see that the parallel semantics are equivalent to the sequential execution
for formalOut parameters, but are not equivalent in Table 8 for the formal in

13

specification (all updates expanded) synch equivalent
a := w ‖ w := E -
a := w ; w := E YES

Table 7: formalOut Parameter Passing

specification (all updates expanded) synch equivalent
v := E ‖ x := v -
v := E ; x := v NO

Table 8: formalIn Parameter Passing

parameters. We apply initialValue substitution on the actualOut parameters.
Tables 9 and 10 show the results this. The initial value of the parameter is
stored and used in the call, the parallel semantics are retained in this way.

References

[1] E.W. Dijkstra. Guarded Commands, Non-determinacy and Formal Deriva-
tion of Programs. Commun. ACM, 18(8):453–457, 1975.

specification (local update expanded) synch equivalent
v := E ‖ op(v, w) -
initial v := v ; v := E ; op(initial v, w) YES

Table 9: Fixed actualOut Parameter Passing

14

specification (all updates expanded) synch equivalent
v := E ‖ x := v -
initial v := v; v := E ; x := initial v YES

Table 10: Fixed formalIn Parameter Passing

15

