UML-B Exercise
Aircraft Engines

Exercise in UML-B State Machine Diagram modelling

Colin Snook

1/14

Exercise 3 - Aircraft Engines

An aircraft has one or more engines.

Each engine has 3 possible electrical power sources:

> An engine alternator which is only available when the engine is running,

> an airframe APU which must be used during starting,

> an airframe battery which is only sufficient to power electronic systems and to start
the APU.

Engine start/run sequence:

> When the engine is not running it is either stood or being started.

> To start the engine, it is motored by an electrical starter motor until ‘lightoff’ is
achieved.

> If lightoff is not achieved, the engine must be purged to remove unburnt fuel before
it is returned to the stood state.

> If lightoff is achieved, the engine reaches ground idle and can be accelerated to flight
idle.

> The engine must be returned to ground idle before it is shut off.

> To avoid damaging the alternator, power should be switched back to battery before
shutting off the engine.

2/14

Exercise 3 - Aircraft Engines

Model this problem using UML-B state-machines attached to classes.

Build the model in stages using refinements and/or state-machine nesting as
appropriate.

Check the model using the state-machine animator and the Pro-B model checker.

3/14

Context Diagram

Firstly, we model the relationship between Aircraft and Engines.
An Engine belongs to exactly one Aircraft (also known as Airframe, hence Af).

(Most of the behaviour concerns the Engines, therefore we choose the
association direction so that it becomes an attribute of Engines since this is

where we are most likely to refer to this relationship).

<~ ENGINE 4 AIRCRAFT

Attributes
< Af: AIRCRAFT 1..n o AT 1..1

4/14

Class Diagram

We introduce classes and link their (fixed*) instances to the corresponding
Class Types. (*We do not need to model creation of Aircraft or Engines).

The APU is a feaure of the airframe so we need to model it in the Aircraft class.
We are only concerned whether it is running or not, so a boolean attribute
and events to start and stop it are sufficient.

We also model the Engines power switching at this level (in a statemachine).
We will leave the engine starting etc. for a later refinement.

© Engine= ENGINE © Alrcraft= AIRCRAFT

Statemachine | Attributes
'gpower ; © apu_running: BOOL
—— Events

¢ ;S:EU 4 apu_start

i iy Z apu_stop

45 SWBAT

4+ SwBAT A

5/14

State-machine for power selection

This is the statemachine modelling the power source selector for an Engine.
We initialise to BAT (battery) mode. From there we can switch to APU and then
to GEN (generator) or back to BAT. From GEN we can switch back to BAT.

We should not use APU power unless the APU is running so we add an invariant
to express this in the APU state. To make sure the invariant isn’t violated, we also

add a guard to prevent switching to this state unless the APU is running.

Of course, this is not sufficient as shown on the next page.

. 4 init (4 BAT| 4 gapy (4 APU 3 swGEN _ |4 GEN

Invariants

<~ thisEngine-Af-apu running = TRUE

2 SwWBAT A
2 SwBAT

6/14

Guard for stopping an APU

We also need to ensure that the APU is not stopped while it is being used

by an engine. (Note that this guard will need to be implemented as some form
of interlock in the real system).

The guard refers to the statemachine (power) in the

Engine class. (Note that the guard assumes the

state-function translation is used). In the guard, the
Attributes function is domain restricted to the Engines that

© apu_running: BOOL are linked to this Aircraft and range restricted to

B Events those that are using APU power. If this leaves an

¥+ apu_start

apu_stop empty set then there are no Engines for this Aircraft
- that are using APU power.

< Alrcraft= AIRCRAFT

guard: Af~[{thisAircraft}] < power > {APU} = &

7/14

First Refinement — Introducing Engine State

In this refinement, we start to model the run state of an engine.

We created a starting point for the refinement using the ‘make refinement’
button in the package diagram. This gives us refined Classes corresponding to
those in our previous machine. We can then add a new statemachine to the

Engine class to model its ‘runState’.

¢ Engine) ¢ Aircraft
Attributes
© apu_running

Statemachines
Events

ower
+rp ¥ apu_start
3£ init = b t
i mIAPU \[9 runState ¥ _apu_stop
% sw.
2 swGEN 2 init
I swBAT 3% lightoff
4 SwBAT_A 4 shutdown

8/14

Statemachine for runState

For this stage we will only introduce enough detail to handle issues
about using the generator. All we need for this is to know whether
the engine is running or not. If the engine is not running, we should
not be using the generator so we add an invariant to the
NotRunning state to express this, and a guard to ensure we do not
shutdown while the generator is still selected.

Invariants '
<~ thisEngine-power # GEN
¥+ shutdown
guard: thisEngine-power # GEN

9/14

Guard for switching to generator power

Having added details that reveal when we can and can’t use the
generator we now need to restrict when we are allowed to select it. To

do this we add a guard to swGEN.

(Note that we are allowed to strengthen the guards of existing events in
refinements. By doing so, we refine the behaviour to be closer to what

we want in the final system).

guard: thisEngine-runState = Running
. init +¥ SWAPU
. X 4 BAT [4 APU| ¢ |SWGEN 4 GEN
4 SWBAT A
25 SWBAT

10/14

Second Refinement

For this stage we will add details about attempting to start an
engine. We can then deal with the constraints on using the APU as a
power source.

We add a nested statemachine to the NotRunning State to model
the startState.

<> NotRunning

Statemachines

init startState
* 1m % Llightoff

2 init | <> Runnin
B start W

i Ii:ht:ﬁ % shutdown ‘
shutdown

% abort

11/14

Statemachine for starting

The Engine is initially STOOD and can then be started. Once it is
STARTING the start may either achieve a sucessful lightoff or may be
aborted. We add the details about aborting a start in a nested
statemachine. This enables us to add the invariant that the APU
must be selected while attempting to start. Note that incoming and
outgoing transitions elaborate those of the parent state

guard: thisEngine-power = APU

<4 STARTING
. % init (4 STOOD % start .
Statemachines
startingState

% timeout . L
% start ¥ lightoff
3 abort
¥ Lightoff
%+ abort

Invariants

<~ thisEngine-power = APU

%+ shutdown

12/14

Guard for switching back to battery power

To preserve the invariant we also need to add a guard to prevent
switching back to battery power while the engine is starting.

Note that we do not need to add a guard to swGEN because the
one we added before, to ensure the engine is running implies the
engine is no longer starting.

guard: thisEngine-startState # STARTING
2 SwAPU
. [4 BaT) & Apy| K SWGEN ‘r CEN
; 2 SWBAT A 7
init
2 SWBAT

13/14

Elaborating the Starting process

The starting process is elaborated
by adding a statemachine
startingState inside STARTING.

e - i:R:;;m () This addition is quite simple
o 4 vighors because it doesn’t depend on any
s iiggﬁ“f ’ other feature such as the power
e source so we decided that a
o o separate refinement wasn’t
necessary.

Another option would have

been to put these details in the
parent statemachine (i.e.
without nesting). However, this

. % start <4 MOTORING % lightoff .

would have made it more % timeout
difficult to express the

invariant for the STARTING . % abort |4 PURGING
state

14/14

Third refinement — elaborating the run state

The third refinement is also quite simple. We just need to add a nested
statemachine to the run state in order to model the engine being accelerated to
flight idle and back. There is no further dependency on the power source.

<> NotRunning

Statemachines

<4 startState

£ init

2 init

¥ start

3% lightoft
¥ shutdown
% abort

<> Running
Statemachines
¥ lightoff runningState
% lightoft
% toFl
% shutdown # toCl
% shutdown

. % lightoff

¥ shutdown

¥ toGI

15/14

