
Formalization of Self-Organizing Multi-
Agent Systems with Event-B and Design

Patterns
(Tool usage)

Zeineb GRAJA
zeineb.graja@irit.fr

Frédéric MIGEON, Christine MAUREL,
Marie-Pierre GLEIZES, Ahmed HADJ KACEM

5th Rodin User and Developer Workshop
June 2-3, 2014 Toulouse - France

Talk outline

 Context & Motivations
 Formal Modelling of SOMAS
 Case Study: Foraging Ants
 Conclusion & Open Questions

2

 Self-Organizing Multi-Agent Systems
 Autonomous agents
 Local information and

interactions
 The global function is emergent

 Bottom-up design
 Simulation & testing

Context

M
ic

ro
 L

ev
el

M
ac

ro
 L

ev
el

3

How to ensure that the designed entities, when interacting
together, will give rise to the desired behavior?
Need for rigourous approaches

Motivations

4

Our proposition: Starting from a running self-organizing
system providing emergent behaviour, we want to formally
prove the obtained result
We use:
Event-B as a modelling language
Patterns giving guidance for refinement and proof
Reachability
Resilience

Tools: Rodin platform and Patterns plug-in

5

M
ac

ro
 L

ev
el

M
ic

ro
 L

ev
elcPattern Spec. (AGP0) cInit. Model (AG0)

refinesrefines

matching

incorporation cRef. 1 (AG1)cPattern Ref. (AGP1)

c

1.
 Lo

ca
l e

ha
vi

or
m

od
el

isa
tio

n

refines

cRef. k (AGk)
refines

cPattern Ref. (GBP1) incorporation

cPattern Spec. (GBP0) matching

c
Reachability ◊□

Allows to prove

refines

cRef. n (GBn)

refines

cRef. m (GBm)cPattern Spec. (SOP0) matching

refines

cPattern Ref. (SOP1) incorporation

c
Adaptivityprogress

Allows to prove

refines
cRef. p (SOp)

2.
 p

ro
vi

ng
re

ac
ha

bi
lit

y
3.

 p
ro

vi
ng

ad
ap

tiv
ity

Our Framework in a Nutshell
Deadlock
Freeness

The Agent Pattern
 Goal: to design a correct local behavior of an agent type
 Pattern refinement

AGP0 Machine
Four events:
Perceive
Decide
Act
ActivEnv

AGP0_1 Machine
Refining the Act event

AGP0_11 Machine
Introducing the agents’
actuators
Refining the Decide
event
Refining the Act events
Witnesses
 Deadlock freeness in
the decision step

First Refinement

Second Refinement

Third Refinement

AGP0_111 Machine
Introducing the sensors and
the representations
Refining the Perceive event
 Refining the Decide event
Deadlock freeness in the

perception step

6

The Global Behavior Pattern (1/2)
 Goal: reason about the convergence of the system

Reach ≜◊ □ taskAchieved
 The proof pattern GBP

 The machine GBP0

7

variables GoalReached, SysState
Invariants
@inv1 GoalReached ∈ STATES → BOOL
@inv2 SysState∈STATES

anticipated event ObserveSuccess
where

@grd1 GoalReached(SysState)=TRUE
end

Events
anticipated event Act refines Act

any agent
where

@grd1 agent∈Agents
@grd2 actionAgent(agent)≠noAction

then
@act1 modeAgent(agent)≔nonActive
@act2 GoalReached:∣GoalReached‘(SysState)∈BOOL

end

The Global Behavior Pattern (2/2)
 The machine GBP1 refines GBP0

8

variables GoalReached, SysState,
GoalReachabilityProgression
Invariants
@inv1 GoalReachabilityProgression ∈ STATES → ℤ
Variant GoalReachabilityProgression(SysState))

anticipated event ObserveSucces
refines ObserveSucces

where
@grd1

GoalReached(SysState)=TRUE
end

Events
convergent event Act refines Act

any agent
where

@grd1 agent∈Agents
@grd2 actionAgent(agent)≠noAction
@grd3 GoalReached(SysSatte)=FALSE
@grd4 GoalReachabilityProgression(SysState) ≠ 0

then
@act1 modeAgent(agent)≔nonActive
@act2 GoalReached, GoalReachabilityProgression:∣GoalReached‘(SysState)∈BOOL

∧GoalReachabilityProgression‘(SysState)<GoalReachabilityProgression(SysState)
end

The Self-Organisation Pattern(1/3)
 Goal: reason about the ability of the system to self-adapt

Adaptivity≜ □ (Perturb⇒◊SuccessSO)
 The proof pattern SOP

 The machine SOP0

9

variables SysState, Perturb, SuccessSO
Invariants
@inv1 SysState∈STATES
@inv2 SuccessSO∈ STATES → BOOL
@inv3 Perturb∈ STATES → BOOL

event Perturbation
refines ActEnvironement

then
@act1 Perturb(SysState)≔TRUE

end

Events
anticipated event Act refines Act

any agent
where

@grd1 agent∈Agents
@grd2 actionAgent(agent)≠noAction

then
@act1 modeAgent(agent)≔nonActive
@act2 SuccessSO:∣SuccessSO‘(SysState)∈BOOL

end

anticipated event ObserveSOSuccess
where

@grd1 SuccessSO(SysState) =TRUE
end

 The machine SOP1 refines SOP0

10

The Self-Organisation Pattern(2/3)

variables SysState, Perturb, SuccessSO,
SOProgression
Invariants
@inv1 SOProgression∈ STATES → ℤ
Variant SOProgression(SysState)

event Perturbation
refines ActEnvironement

then
@act1 Perturb(SysState)≔TRUE

end

Events
convergent event ApplySO refines Act

any agent
where

@grd1 agent∈Agents
@grd2 actionAgent(agent)≠noAction
@grd3 SuccessSO =FALSE
@grd4 SOProgression ≠ 0

then
@act1 modeAgent(agent)≔nonActive
@act2 SuccessSO,SOProgression:∣
SuccessSO‘(SysState)∈BOOL

∧SOProgression‘(SysState)<SOProgression(SysState)
end

anticipated event ObserveSOSuccess
where

@grd1 SuccessSO(SysState) =TRUE
end

The Self-Organisation Pattern(3/3)
 Given the following invariant:

 We need to prove the following theorems:
 Theorem1: to be proved for every event

 Theorem2

11

Perturb ˄ ¬ SuccessSO⇒
(∃ ag.ag∈Agents ˄ SOProgression ≠0)

∃ ag.ag∈Agents ˄ SOProgression ≠0 ˄ ¬ SuccessSO ⇒
((∃ ag.ag∈Agents ˄ SOProgression ≠0) ˅ SuccessSO)

□ ◊ ((∀ag.ag∈Agents˄SOProgression=0)˅SuccessSO)
Every event describing a state where SO is not yet
achieved is convergent
The machine SOP1 is deadlock free in a state where SO is
not yet achieved

Foraging Ants Case Study: Micro Level
Description

 Micro Level
 Every ant is an agent
 Property : current location
 Representations: food, pheromone, obstacles and ants
 Decision: choose the next location
 Actions: Move, Drop pheromone, Harvest food, Drop food

NEST

12

Agents pattern → Deadlocked free behavior

Reach1. The ants are able to bring all the food to the
nest

Global Behavior pattern → Reach1

13

Foraging ants: Macro Level Properties

◊(□(QuantityFood(Nest)=TotalFood(InitDistFood)˄
∀ loc.loc∈Locations\{Nest}⇒(QuantityFood(loc)=0))

SO1. When a source of food is reached, the ants are
able to focus on its exploitation

SO2. When a detected source of food disappears, the
ants can continue the environment exploration.

Self-Organisation pattern → SO1 and SO2 14

Foraging ants: Macro Level Properties

□(∀ loc.loc∈Locations\{Nest}˄InitDistFood(loc)≠ 0
˄Detected(loc)⇒◊(QuantityFood(loc)=0))

□((∃l.l∈Locations ˄QuantityFood(l)>0˄
(∀ loc1.loc1∈Locations\{Nest}˄EntirelyExploited(loc1)⇒
◊(∃loc2.loc2∈Locations˄loc2≠loc1˄QuantityFood(loc2)≠0 ˄
Detected(loc2))

Conclusion

The use of the patterns gives an important
guidance for self-organizing MAS designers
When defining the local behavior of the agents
When describing what should be proved for proving

global properties

15

Open Questions

What about a fully automatic process for applying
patterns?
Matching is done manually

The proof patterns do not describe how to prove
the global properties
How these patterns can be improved in order to make

the proofs easier?
It is possible to unify simulation and formal

verification in one framework in order to reason
rigorously about SOMAS?

16

Thank You For Your Feedback

Thank you For
Linas Laibinis & Elena Troubitsyna

17

	Diapositive numéro 1
	Talk outline
	Context
	Motivations
	Our Framework in a Nutshell
	The Agent Pattern
	The Global Behavior Pattern (1/2)
	The Global Behavior Pattern (2/2)
	The Self-Organisation Pattern(1/3)
	The Self-Organisation Pattern(2/3)
	The Self-Organisation Pattern(3/3)
	Foraging Ants Case Study: Micro Level Description
	Diapositive numéro 13
	Diapositive numéro 14
	Conclusion
	Open Questions
	Diapositive numéro 17

