’ alany UNIVERSITE = L‘i{- [-::f_..
' BCAD TOULOUSE I D@ | Sac

S PAUL SABATI .

N\viis 23 F

TTTTTTTTTTTTTTTTT

Formalization of Self-Organizing Multi-
Agent Systems with Event-B and Design
Patterns
(Tool usage)

Zeineb GRAJA
zeineb.graja@irit.fr

Frédéric MIGEON, Christine MAUREL,
Marie-Pierre GLEIZES, Ahmed HADJ KACEM

5th Rodin User and Developer Workshop
June 2-3, 2014 Toulouse - France

Talk outline

Context & Motivations
Formal Modelling of SOMAS
Case Study: Foraging Ants
Conclusion & Open Questions

Context

o Self-Organizing Multi-Agent Systems P |
[O

o Autonomous agents / @)

a Local information and 9

interactions
0 The global function is emergent

0 Bottom-up design
o Simulation & testing

r

How to ensure that the designed entities, when interacting
together, will give rise to the desired behavior?

=» Need for rigourous approaches

Macro Level

Micro Level

Motivations

=»Our proposition: Starting from a running self-organizing
system providing emergent behaviour, we want to formally

prove the obtained result
We use:
JEvent-B as a modelling language
dPatterns giving guidance for refinement and proof

(JReachability
JResilience
Tools: Rodin platform and Patterns plug-in

Our Framework in a Nutshell

Deadlock |
Freeness

matching

Pattern Spec. (AGP,)

nit. Model (AG,)

:: refines refines
Pattern Ref. (AGpl) 1ncorporation Ref. 1 (AGl) I
Allows to prove | refines
[Reachability <>D] Pattern Spec. (GBP,) Ie palding | Ref. k (AG)) I
s Ref. n (GB
er. n
Pattern Ref. (GBP,) Ir. ” .()
Allows to prove neorporation refines
7 1
[AdaptiVityprogress] Pattern Spec. (SOP,) W lzatching Ref.m (GB,,)
L refines Tre ines

Pattern Ref. (SOP,) I

incorporation’

J_Ref. p (SO, |

Micro Level

Macro Level

= 2.proving 1. Local ehavior
reachability

3. proving
adaptivity

<

modelisation

The Agent Pattern

0 Goal: to design a correct local behavior of an agent type
0 Pattern refinement

AGPO Machine
Four events:
®Perceive
mDecide
= Act

= ActivEnv

First Refinement

AGPO_1 Machine
Refining the Act event

AGPO_11 Machine
@Introducing the agents’
actuators

@ Refining the Dec
event

©Refining the Act ¢
"Witnesses
=» Deadlock free
the decision step

AGP0_111 Machine
@Introducing the sensors and
the representations
@Refining the Perceive event
® Refining the Decide event
=» Deadlock freeness in the
perception step

The Global Behavior Pattern (1/2)

Goal: reason about the convergence of the system
Reach 20 O taskAchieved
The proof pattern GBP
o The machine GBP,

variables GoalReached, SysState anticipated event ObserveSuccess
Invariants where
@inv1 GoalReached € STATES - BOOL @grd1 GoalReached(SysState)=TRUE
@inv2 SysStateeSTATES end
Events
anticipated event Act refines Act
any agent
where

@grd1 agent EAgents

@grd2 actionAgent(agent)#noAction
then

@actl modeAgent(agent):=nonActive

@act2 GoalReached:|GoalReached‘(SysState)eBOOL
end

The Global Behavior Pattern (2/2)

a The machine GBP, refines GBP,

variables GoalReached, SysState, anticipated event ObserveSucces
GoalReachabilityProgression refines ObserveSucces
Invariants where
@inv1 GoalReachabilityProgression € STATES - Z @grdl
Variant GoalReachabilityProgression(SysState)) GoalReached(SysState)=TRUE
end
Events
convergent event Act refines Act
any agent
where

@grd1 agent EAgents
@grd2 actionAgent(agent)znoAction
@grd3 GoalReached(SysSatte)=FALSE

@grd4 GoalReachabilityProgression(SysState) # 0
then

@actl modeAgent(agent):=nonActive
@act2 GoalReached, GoalReachabilityProgression:|GoalReached‘(SysState)EBOOL

AGoalReachabilityProgression’(SysState)<GoalReachabilityProgression(SysState)
end 8

The Self-Organisation Pattern(1/3)

0 Goal: reason about the ability of the system to self-adapt

Adaptivity 2 O (Perturb=0SuccessSO)
2o The proof pattern SOP

o The machine SOP,

variables SysState, Perturb, SuccessSO event Perturbation
Invariants refines ActEnvironement
@inv1 SysState€STATES then
@inv2 SuccessSO€E STATES - BOOL @actl Perturb(SysState) - =TRUE
@inv3 Perturb€ STATES - BOOL end
Events anticipated event ObserveSOSuccess
anticipated event Act refines Act where
any agent @grd1 SuccessSO(SysState) =TRUE
where end
@grd1 agent EAgents
@grd2 actionAgent(agent)znoAction
then

@act1l modeAgent(agent):=nonActive

@act2 SuccessSO:|SuccessSO’(SysState)EBOOL ;
end

The Self-Organisation Pattern(2/3)

o The machine SOP; refines SOP,

variables SysState, Perturb, SuccessSO,
SOProgression

Invariants

@inv1l SOProgression€ STATES = Z
Variant SOProgression(SysState)

event Perturbation
refines ActEnvironement
then
@act1 Perturb(SysState) -=TRUE
end

Events
convergent event ApplySO refines Act
any agent
where
@grd1 agent EAgents
@grd2 actionAgent(agent)znoAction
@grd3 SuccessSO =FALSE
@grd4 SOProgression # 0
then
@act1l modeAgent(agent):=nonActive
@act2 SuccessSO,SOProgression:|
SuccessSO‘(SysState)eBOOL
ASOProgression‘(SysState)<SOProgression(SysState)
end

anticipated event ObserveSOSuccess
where
@grd1 SuccessSO(SysState) =TRUE
end

10

The Self-Organisation Pattern(3/3)

0 Given the following invariant:

Perturb A - SuccessSO=
(3 ag.ageAgents A SOProgression +0)

0 We need to prove the following theorems:
> Theoreml: to be proved for every event

1 ag.ageAgents A SOProgression =0 A = SuccessSO =
((3 ag.ageAgents A SOProgression +0) v SuccessSO)

> Theorem?2

0¢ ((Vag.ageAgentsaSOProgression=0)VvSuccessSO)

=»Every event describing a state where SO is not yet
achieved is convergent

= The machine SOP, is deadlock free in a state where SO is
not yet achieved

Foraging Ants Case Study: Micro Level
Description

2o Micro Level |
O Every ant is an agent ‘if
0 Property : current location -
O Representations: food, pheromone, obstacles and ants -
O Decision: choose the next location NEST

O Actions: Move, Drop pheromone, Harvest food, Drop food

2 Agents pattern - Deadlocked free behavior

Foraging ants: Macro Level Properties

dReachl. The ants are able to bring all the food to the
nest

O(J(QuantityFood(Nest)=TotalFood(InitDistFood) A
V loc.loc€Locations\{Nest}=(QuantityFood(loc)=0))

= Global Behavior pattern - Reachl

Foraging ants: Macro Level Properties

adSO1. When a source of food is reached, the ants are
able to focus on its exploitation

[1(V loc.loceLocations\{Nest}alnitDistFood(loc) # 0
A Detected(loc)=0(QuantityFood(loc)=0))

aS02. When a detected source of food disappears, the
ants can continue the environment exploration.

L1((31.1 eLocations AQuantityFood(1)>0na

(V locl.locl€Locations\{Nest}aEntirelyExploited(locl)=
0(Floc2.loc2eLocationsaloc2#locl1 AQuantityFood(loc2) #0 A
Detected(loc2))

= Self-Organisation pattern - SO1 and SO2

Conclusion

JThe use of the patterns gives an important
guidance for self-organizing MAS designers
JWhen defining the local behavior of the agents

JIWhen describing what should be proved for proving
global properties

Open Questions

JWhat about a fully automatic process for applying
patterns?

. Matching is done manually

JThe proof patterns do not describe how to prove
the global properties

JHow these patterns can be improved in order to make
the proofs easier?

It is possible to unify simulation and formal
verification in one framework in order to reason
rigorously about SOMAS?

Thank You For Your Feedback

Thank you For
Linas Laibinis & Elena Troubitsyna

	Diapositive numéro 1
	Talk outline
	Context
	Motivations
	Our Framework in a Nutshell
	The Agent Pattern
	The Global Behavior Pattern (1/2)
	The Global Behavior Pattern (2/2)
	The Self-Organisation Pattern(1/3)
	The Self-Organisation Pattern(2/3)
	The Self-Organisation Pattern(3/3)
	Foraging Ants Case Study: Micro Level Description
	Diapositive numéro 13
	Diapositive numéro 14
	Conclusion
	Open Questions
	Diapositive numéro 17

