
Formalization of Self-Organizing Multi-
Agent Systems with Event-B and Design

Patterns
(Tool usage)

Zeineb GRAJA
zeineb.graja@irit.fr

Frédéric MIGEON, Christine MAUREL,
Marie-Pierre GLEIZES, Ahmed HADJ KACEM

5th Rodin User and Developer Workshop
June 2-3, 2014 Toulouse - France

Talk outline

 Context & Motivations
 Formal Modelling of SOMAS
 Case Study: Foraging Ants
 Conclusion & Open Questions

2

 Self-Organizing Multi-Agent Systems
 Autonomous agents
 Local information and

interactions
 The global function is emergent

 Bottom-up design
 Simulation & testing

Context

M
ic

ro
 L

ev
el

M
ac

ro
 L

ev
el

3

How to ensure that the designed entities, when interacting
together, will give rise to the desired behavior?
Need for rigourous approaches

Motivations

4

Our proposition: Starting from a running self-organizing
system providing emergent behaviour, we want to formally
prove the obtained result
We use:
Event-B as a modelling language
Patterns giving guidance for refinement and proof
Reachability
Resilience

Tools: Rodin platform and Patterns plug-in

5

M
ac

ro
 L

ev
el

M
ic

ro
 L

ev
elcPattern Spec. (AGP0) cInit. Model (AG0)

refinesrefines

matching

incorporation cRef. 1 (AG1)cPattern Ref. (AGP1)

c

1.
 Lo

ca
l e

ha
vi

or
m

od
el

isa
tio

n

refines

cRef. k (AGk)
refines

cPattern Ref. (GBP1) incorporation

cPattern Spec. (GBP0) matching

c
Reachability ◊□

Allows to prove

refines

cRef. n (GBn)

refines

cRef. m (GBm)cPattern Spec. (SOP0) matching

refines

cPattern Ref. (SOP1) incorporation

c
Adaptivityprogress

Allows to prove

refines
cRef. p (SOp)

2.
 p

ro
vi

ng
re

ac
ha

bi
lit

y
3.

 p
ro

vi
ng

ad
ap

tiv
ity

Our Framework in a Nutshell
Deadlock
Freeness

The Agent Pattern
 Goal: to design a correct local behavior of an agent type
 Pattern refinement

AGP0 Machine
Four events:
Perceive
Decide
Act
ActivEnv

AGP0_1 Machine
Refining the Act event

AGP0_11 Machine
Introducing the agents’
actuators
Refining the Decide
event
Refining the Act events
Witnesses
 Deadlock freeness in
the decision step

First Refinement

Second Refinement

Third Refinement

AGP0_111 Machine
Introducing the sensors and
the representations
Refining the Perceive event
 Refining the Decide event
Deadlock freeness in the

perception step

6

The Global Behavior Pattern (1/2)
 Goal: reason about the convergence of the system

Reach ≜◊ □ taskAchieved
 The proof pattern GBP

 The machine GBP0

7

variables GoalReached, SysState
Invariants
@inv1 GoalReached ∈ STATES → BOOL
@inv2 SysState∈STATES

anticipated event ObserveSuccess
where

@grd1 GoalReached(SysState)=TRUE
end

Events
anticipated event Act refines Act

any agent
where

@grd1 agent∈Agents
@grd2 actionAgent(agent)≠noAction

then
@act1 modeAgent(agent)≔nonActive
@act2 GoalReached:∣GoalReached‘(SysState)∈BOOL

end

The Global Behavior Pattern (2/2)
 The machine GBP1 refines GBP0

8

variables GoalReached, SysState,
GoalReachabilityProgression
Invariants
@inv1 GoalReachabilityProgression ∈ STATES → ℤ
Variant GoalReachabilityProgression(SysState))

anticipated event ObserveSucces
refines ObserveSucces

where
@grd1

GoalReached(SysState)=TRUE
end

Events
convergent event Act refines Act

any agent
where

@grd1 agent∈Agents
@grd2 actionAgent(agent)≠noAction
@grd3 GoalReached(SysSatte)=FALSE
@grd4 GoalReachabilityProgression(SysState) ≠ 0

then
@act1 modeAgent(agent)≔nonActive
@act2 GoalReached, GoalReachabilityProgression:∣GoalReached‘(SysState)∈BOOL

∧GoalReachabilityProgression‘(SysState)<GoalReachabilityProgression(SysState)
end

The Self-Organisation Pattern(1/3)
 Goal: reason about the ability of the system to self-adapt

Adaptivity≜ □ (Perturb⇒◊SuccessSO)
 The proof pattern SOP

 The machine SOP0

9

variables SysState, Perturb, SuccessSO
Invariants
@inv1 SysState∈STATES
@inv2 SuccessSO∈ STATES → BOOL
@inv3 Perturb∈ STATES → BOOL

event Perturbation
refines ActEnvironement

then
@act1 Perturb(SysState)≔TRUE

end

Events
anticipated event Act refines Act

any agent
where

@grd1 agent∈Agents
@grd2 actionAgent(agent)≠noAction

then
@act1 modeAgent(agent)≔nonActive
@act2 SuccessSO:∣SuccessSO‘(SysState)∈BOOL

end

anticipated event ObserveSOSuccess
where

@grd1 SuccessSO(SysState) =TRUE
end

 The machine SOP1 refines SOP0

10

The Self-Organisation Pattern(2/3)

variables SysState, Perturb, SuccessSO,
SOProgression
Invariants
@inv1 SOProgression∈ STATES → ℤ
Variant SOProgression(SysState)

event Perturbation
refines ActEnvironement

then
@act1 Perturb(SysState)≔TRUE

end

Events
convergent event ApplySO refines Act

any agent
where

@grd1 agent∈Agents
@grd2 actionAgent(agent)≠noAction
@grd3 SuccessSO =FALSE
@grd4 SOProgression ≠ 0

then
@act1 modeAgent(agent)≔nonActive
@act2 SuccessSO,SOProgression:∣
SuccessSO‘(SysState)∈BOOL

∧SOProgression‘(SysState)<SOProgression(SysState)
end

anticipated event ObserveSOSuccess
where

@grd1 SuccessSO(SysState) =TRUE
end

The Self-Organisation Pattern(3/3)
 Given the following invariant:

 We need to prove the following theorems:
 Theorem1: to be proved for every event

 Theorem2

11

Perturb ˄ ¬ SuccessSO⇒
(∃ ag.ag∈Agents ˄ SOProgression ≠0)

∃ ag.ag∈Agents ˄ SOProgression ≠0 ˄ ¬ SuccessSO ⇒
((∃ ag.ag∈Agents ˄ SOProgression ≠0) ˅ SuccessSO)

□ ◊ ((∀ag.ag∈Agents˄SOProgression=0)˅SuccessSO)
Every event describing a state where SO is not yet
achieved is convergent
The machine SOP1 is deadlock free in a state where SO is
not yet achieved

Foraging Ants Case Study: Micro Level
Description

 Micro Level
 Every ant is an agent
 Property : current location
 Representations: food, pheromone, obstacles and ants
 Decision: choose the next location
 Actions: Move, Drop pheromone, Harvest food, Drop food

NEST

12

Agents pattern → Deadlocked free behavior

Reach1. The ants are able to bring all the food to the
nest

Global Behavior pattern → Reach1

13

Foraging ants: Macro Level Properties

◊(□(QuantityFood(Nest)=TotalFood(InitDistFood)˄
∀ loc.loc∈Locations\{Nest}⇒(QuantityFood(loc)=0))

SO1. When a source of food is reached, the ants are
able to focus on its exploitation

SO2. When a detected source of food disappears, the
ants can continue the environment exploration.

Self-Organisation pattern → SO1 and SO2 14

Foraging ants: Macro Level Properties

□(∀ loc.loc∈Locations\{Nest}˄InitDistFood(loc)≠ 0
˄Detected(loc)⇒◊(QuantityFood(loc)=0))

□((∃l.l∈Locations ˄QuantityFood(l)>0˄
(∀ loc1.loc1∈Locations\{Nest}˄EntirelyExploited(loc1)⇒
◊(∃loc2.loc2∈Locations˄loc2≠loc1˄QuantityFood(loc2)≠0 ˄
Detected(loc2))

Conclusion

The use of the patterns gives an important
guidance for self-organizing MAS designers
When defining the local behavior of the agents
When describing what should be proved for proving

global properties

15

Open Questions

What about a fully automatic process for applying
patterns?
Matching is done manually

The proof patterns do not describe how to prove
the global properties
How these patterns can be improved in order to make

the proofs easier?
It is possible to unify simulation and formal

verification in one framework in order to reason
rigorously about SOMAS?

16

Thank You For Your Feedback

Thank you For
Linas Laibinis & Elena Troubitsyna

17

	Diapositive numéro 1
	Talk outline
	Context
	Motivations
	Our Framework in a Nutshell
	The Agent Pattern
	The Global Behavior Pattern (1/2)
	The Global Behavior Pattern (2/2)
	The Self-Organisation Pattern(1/3)
	The Self-Organisation Pattern(2/3)
	The Self-Organisation Pattern(3/3)
	Foraging Ants Case Study: Micro Level Description
	Diapositive numéro 13
	Diapositive numéro 14
	Conclusion
	Open Questions
	Diapositive numéro 17

