Difference between pages "Code Generation Tutorial" and "Rodin Workshop 2012"

From Event-B
(Difference between pages)
Jump to navigationJump to search
imported>Andy
 
imported>WikiSysop
 
Line 1: Line 1:
'''This Page is Under Construction!!!!'''
+
= Rodin User and Developer Workshop, 27-29 February 2012,  Fontainebleau, France =
  
=== Tutorial Overview ===
 
  
The aim of the tutorial is to allow users to explore the approach with a relatively simple example. The example uses a shared buffer with reader and writer processes. The tutorial is presented in three stages, making use of the example projects from the download site. There are two translations performed, one is to a common language model (IL1). The second is to an Event-B project which includes a model of the implementation. There is a PrettyPrinter for Ada source code, which uses the common language model. An overview of Tasking Event-B can be found at http://wiki.event-b.org/index.php/Tasking_Event-B_Overview.
+
Event-B is a formal method for system-level modelling and analysis. The Rodin Platform is an Eclipse-based toolset for Event-B that provides effective support for modelling and automated proof. The platform is open source and is further extendable with plug-ins. A range of plug-ins have already been developed including ones that support animation, model checking and UML-B.
 +
The [http://wiki.event-b.org/index.php/Rodin_Workshop_2009 first Rodin User and Developer Workshop was held in July 2009 at the University of Southampton] while the [http://wiki.event-b.org/index.php/Rodin_Workshop_2010 second took place at the University of Düsseldorf in September 21-23, 2010]. The 2012 workshop will be part of the [http://www.bmethod.com/php/federated-event-2012-en.php DEPLOY Federated Event].
  
A typical Event-B development may be refined to the point where it is ready for implementation, but the Event-B language is not expressive enough to fully describe the implementation. Tasking Event-B facilitates this final step to implementation, by extending Event-B with the necessary constructs. Event-B machines that are to be implemented (and their seen Contexts) are selected and added to a ''Tasking Development''; the Tasking Development files have the file extension ''.tasking''. The machines in the Tasking Development are then extended with implementation details.
+
While much of the development and use of Rodin takes place within the [http://www.deploy-project.eu EU FP7 DEPLOY Project], there is a growing group of users and plug-in developers outside of DEPLOY. The purpose of this workshop is to bring together existing and potential users and developers of the Rodin toolset and to foster a broader community of Rodin users and developers.
  
The example/tutorial projects are,
+
For Rodin users the workshop will provide an opportunity to share tool experiences and to gain an understanding of on-going tool developments. For plug-in developers the workshop will provide an opportunity to showcase their tools and to achieve better coordination of tool development effort.
  
{| border="1"
+
The format will be presentations together with plenty of time for discussion. On Day 1 a Developer Tutorial will be held while Days 2 and 3 will be devoted to tool usage and tool developments. The workshop will be followed by an open  [http://www.bmethod.com/php/federated-event-2012-en.php Industry Day].
|SharedBuffer20100819Demo
 
|An example project with a completed Tasking Development and IL1 model (post IL1 translation, but before Event-B translation).
 
|-
 
|Sharedbuffer20100819Tasking
 
|Same as the example project above, but with Event-B model translations. The difference being that this development includes a model of the implementation. These are refinements that include a program counter to describe flow of execution in each task.
 
|-
 
|SharedBuffer20100819Tutorial
 
|A bare project for step 1 of the tutorial.
 
|-
 
|Sharedbuffer20100819Tutorial2
 
|A partially completed tasking development for steps 2 and 3 of the tutorial.
 
|}
 
  
== Preliminaries ==
+
If you are interested in giving a presentation at the Rodin workshop, send a short abstract (1 or 2 pages of A4) to rodin@ecs.soton.ac.uk by 16 January 2012. Indicate whether it is a tool usage or tool development presentation. Plug-in presentations may be about existing developments or planned future developments. We will endeavour to accommodate all submissions that are relevant to Rodin and Event-B.
Before further discussion of the modelling aspects, we take a look at the PrettyPrint viewers. The PrettyPrinters make the viewing of IL1 and tasking models easier; it also provides a route to generate source code. The source code can easily be pasted from the IL1 Pretty Printer window into an the Ada source file .  
 
==== The PrettyPrint View of a Tasking Development ====
 
To open the Tasking PrettyPrint viewer,
 
* from the top-menu select ''Window/Show View/Other/Tasking Pretty Printer''.
 
  
Note that the Tasking PrettyPrinter may have to be closed when editing the Tasking Development, since it can give rise to exceptions. The PrettyPrinter would need further work to make it robust, however it is intended only as a short-term solution.
 
  
* Open the ''SharedBuffer20100819Demo'' Project and switch to the Resource Perspective.
+
'''Organisers'''
* Open the ''.tasking'' model and inspect it. Clicking on the Main, Machine or Event nodes updates the pretty print window.
 
  
==== Viewing Source Code ====
+
Michael Butler, University of Southampton
aka. The PrettyPrint View of an IL1 Model.
 
  
To view Ada source code,
+
Stefan Hallerstede, University of Aarhus
* from the top-menu select ''Window/Show View/Other/IL1 Pretty Printer''.
 
* Open the ''SharedBuffer20100819Demo'' Project and switch to the Resource Perspective.
 
* Open the ''.il1'' model and inspect it. Clicking on the Protected, Main Entry, or Task nodes updates the pretty print window.
 
  
==== Cleaning the Tasking Development ====
+
Thierry Lecomte, ClearSy
If the ''.tasking'' file has errors, then it may need cleaning. To do this right-click on the ''Main'' node, select ''Epsilon Translation/CleanUp''. If a model has errors it can still be viewed by clicking on the ''Selection'' tab at the bottom of the tasking editor window.
 
  
== The Tutorial ==
+
Michael Leuschel, University of Düsseldorf
The steps needed to generate code from an Event-B model, in this tutorial, are as follows,
 
* Step 1 - Create the tasking development. [http://wiki.event-b.org/index.php/Code_Generation_Tutorial#Creating_The_Tasking_Development Creating the tasking development].
 
* Step 2 - Add annotations.
 
* Step 3 - Invoke translators.
 
  
==== Creating The Tasking Development ====
+
Alexander Romanovsky, University of Newcastle
* Change to the Event-B Perspective.
 
* Open the ''SharedBuffer20100819Tutorial'' Project.
 
* Select the following Machines: Reader, Writer and Shared.
 
* Right-click and select ''Make Tasking Development/Generate Tasking Development''.
 
  
The new Tasking Development will not be visible in the Event-B perspective, change to the resource perspective, open and inspect the new ''.tasking'' file. The Tasking Development contains (the EMF representation of) the machines that we wish to provide implementations for. In order to introduce the new concepts we have prepared a partially complete development.
+
Laurent Voisin, Systerel
 
 
Change to the Project ''SharedBuffer20100819Tutorial2'' to begin the next step.
 
 
 
==== Providing the Annotations for Implementations ====
 
* Close any Tasking Pretty Print Viewers that remain open. The incomplete model will give rise to exceptions.
 
* Go to the to the Resource Perspective.
 
* Open and inspect the ''.tasking'' machine.
 
 
 
The ''WriterTsk'' and ''SharedObj'' machines are incomplete. We will take the steps to necessary to provide implementation details.
 
 
 
===== The WriterTsk Machine =====
 
In the partially complete tutorial project we already identified the ''WriterTsk'' as an ''Auto Task'' Tasking Machine, by adding the ''Auto Task'' extension. ''Auto Tasks'' are tasks that will be declared and defined in the ''Main'' procedure of the implementation. The effect of this is that the ''Auto Tasks'' are created when the program first loads, and then activated (made ready to run) before the ''Main'' procedure body runs. We have added the ''Periodic Task'' extension to the ''Auto Task'', and set a period of 250 milliseconds. We will now complete the sequence that has been partially defined in the task body.
 
 
 
*'''Add Synchronisation between TWrite and SWrite'''.
 
** Expand the ''Auto Task Machine'' node.
 
** Expand the ''Seq'' sub-tree.
 
** Right-click on the ''Seq'' node and select ''New Child/Left Branch EventWrapper''.
 
** Provide the event label ''w1'' using the properties view.
 
** Right-click on Event Wrapper and select ''New Child/ Synch Events''.
 
** Select ''Synch Events'' and go to the drop-down menu of the ''Local Event'' property.
 
** At this point the drop-down box displays a number of event names, select the ''TWrite'' event.
 
** Go to the drop-down menu of the ''Remote Event'' property.
 
** From the list of events select the ''SWrite'' event.
 
 
 
The Synch Events construct is used to implement [http://wiki.event-b.org/index.php/Tasking_Event-B_Overview#Control_Constructs Event Synchronisation]. The next step wraps an event in an Event Wrapper in order to update the local state; there is no synchronisation as such but we will re-use the constructs that already exist.
 
 
 
*'''Add the Wrapped Event TcalcWVal'''.
 
** Expand the sub-tree of the second ''Seq'' node.
 
** Right-click on the ''Seq'' node and select ''New Child/Left Branch EventWrapper''.
 
** Provide the event label ''w2'' using the properties view.
 
** Right-click on Event Wrapper and select ''New Child/ Synch Events''.
 
** Select ''Synch Events'' and go to the drop-down menu of the ''Local Event'' property.
 
** From the list of events select the ''TcalcWVal'' event.
 
 
 
We have now completed the task body, and it just remains to complete provide details for the ''TWrite'' event. The ''TWrite'' event in ''WriterTsk'' is to be synchronized with the ''SWrite'' event in the ''SharedObj''.
 
*'''Add Event Extensions'''.
 
** Right-click on the ''TWrite'' Event node.
 
** Select ''New Child/Extension''.
 
** Right-click on the ''Extension'' node and select ''New Child/Implementation'' from the menu.
 
** Go to the Implementation properties view and set the ''Implementation Type'' property to ''ProcedureSynch''.
 
 
 
*'''Identify Incoming and Outgoing parameters'''.
 
** Right-click on the ''outAP'' node and add an ''Extension''.
 
** Right-click on the ''Extension'' and select''New Child/Parameter Type''.
 
** Go to the ''Parameter Type'' properties view and set the ''Parameter Type'' property to ''actualOut''.
 
** Right-click on the ''inAP'' node and add an ''Extension''.
 
** Right-click on the ''Extension'' and select''New Child/Parameter Type''.
 
** Go to the ''Parameter Type'' properties view and set the ''Parameter Type'' property to ''actualIn''.
 
 
 
===== The Shared Machine =====
 
 
 
The next step is to identify the ''SharedObj'' machine as a ''Shared Machine''. The ''SharedObj'' Machine will be extended using the Event-B EMF extension mechanism.
 
* Right-click on the ''SharedObj'' Machine node in the ''.tasking'' file.
 
* Select ''New Child/Extension''.
 
* Right-click on the ''Extension'' node and select ''New Child/Shared Machine'' from the menu.
 
 
 
We now show how to extend the ''SWrite'' event of the Shared Machine with details about its implementation. The ''SWrite'' event in ''SharedObj'' is to be synchronized with the ''TWrite'' event in the ''WriterTsk''.
 
* '''Identify SWrite as a Syncronisation'''.
 
** Right-click on the ''SWrite'' Event node.
 
** Select ''New Child/Extension''.
 
** Right-click on the ''Extension'' node and select ''New Child/Implementation'' from the menu.
 
** Go to the Implementation properties view and set the ''Implementation Type'' property to ''ProcedureSynch''.
 
 
 
* '''Identify incoming and outgoing parameters'''.
 
** Right-click on the ''inFP'' node and add an ''Extension''.
 
** Right-click on the ''Extension'' and select''New Child/Parameter Type''.
 
** Go to the ''Parameter Type'' properties view and set the ''Parameter Type'' property to ''formalIn''.
 
** Right-click on the ''outFP'' node and add an ''Extension''.
 
** Right-click on the ''Extension'' and select''New Child/Parameter Type''.
 
** Go to the ''Parameter Type'' properties view and set the ''Parameter Type'' property to ''formalOut''.
 
 
 
To summarise, for a Shared Machine definition:
 
# Add the ''SharedMachine'' Machine type.
 
# For each event, define the Event Type.
 
# For each event parameter, define the Parameter Type.
 

Revision as of 17:43, 8 September 2011

Rodin User and Developer Workshop, 27-29 February 2012, Fontainebleau, France

Event-B is a formal method for system-level modelling and analysis. The Rodin Platform is an Eclipse-based toolset for Event-B that provides effective support for modelling and automated proof. The platform is open source and is further extendable with plug-ins. A range of plug-ins have already been developed including ones that support animation, model checking and UML-B. The first Rodin User and Developer Workshop was held in July 2009 at the University of Southampton while the second took place at the University of Düsseldorf in September 21-23, 2010. The 2012 workshop will be part of the DEPLOY Federated Event.

While much of the development and use of Rodin takes place within the EU FP7 DEPLOY Project, there is a growing group of users and plug-in developers outside of DEPLOY. The purpose of this workshop is to bring together existing and potential users and developers of the Rodin toolset and to foster a broader community of Rodin users and developers.

For Rodin users the workshop will provide an opportunity to share tool experiences and to gain an understanding of on-going tool developments. For plug-in developers the workshop will provide an opportunity to showcase their tools and to achieve better coordination of tool development effort.

The format will be presentations together with plenty of time for discussion. On Day 1 a Developer Tutorial will be held while Days 2 and 3 will be devoted to tool usage and tool developments. The workshop will be followed by an open Industry Day.

If you are interested in giving a presentation at the Rodin workshop, send a short abstract (1 or 2 pages of A4) to rodin@ecs.soton.ac.uk by 16 January 2012. Indicate whether it is a tool usage or tool development presentation. Plug-in presentations may be about existing developments or planned future developments. We will endeavour to accommodate all submissions that are relevant to Rodin and Event-B.


Organisers

Michael Butler, University of Southampton

Stefan Hallerstede, University of Aarhus

Thierry Lecomte, ClearSy

Michael Leuschel, University of Düsseldorf

Alexander Romanovsky, University of Newcastle

Laurent Voisin, Systerel