Difference between pages "D45 General Platform Maintenance" and "D45 Model Checking"

From Event-B
(Difference between pages)
Jump to navigationJump to search
imported>Jastram
 
imported>Leuschel
 
Line 1: Line 1:
 
= Overview =
 
= Overview =
The Rodin platform versions concerned by this deliverable are:
+
{{TODO}} An overview of the work done about model checking.
* 2.1(08.02.2011),
 
* 2.2(01.06.2011),
 
* 2.2.2(01.08.2011),
 
* 2.3(04.10.2011),
 
* 2.4(31.01.2011),
 
* 2.5(30.04.2011).
 
This year, the maintenance carried on fixing identified bugs, although an emphasis was put on correcting usability issues. Indeed, during the annual meeting in Nice, the WP9 members agreed to refocus on the needed tasks to address some specific bugs and issues reported by DEPLOY partners, and wished resolved by the end of DEPLOY. Thus, no new features were implemented but those appearing in the description of work. The tasks to be performed by the WP9 members were then scheduled, prioritized and regularly updated during the WP9 bi-weekly meetings. The updates allowed to capture and integrate rapidly some minor changes to enhance the usability of the platform which were required by the DEPLOY partners. The following paragraphs will give an overview of the the work that has been performed concerning maintenance on the existing platform components (i.e. core platform and plug-ins).
 
  
See the Release Notes<ref name="documentation">http://wiki.event-b.org/index.php/D32_General_Platform_Maintenance#Available_Documentation</ref> and the SourceForge<ref name=documentation>http://wiki.event-b.org/index.php/D45_General_Platform_Maintenance#Available_Documentation</ref> databases (bugs and feature requests) for details about the previous and upcoming releases of the Rodin platform.
+
== State Space Reduction, Compression and Hashing ==
  
* General platform maintenance
+
Driven by a case study from the space sector (a protocol modeled by SSF), where memory consumption was an issue, we have investigated ways to reduce ProB's memory consumption.
The maintenance done to overcome Rodin scalability weaknesses and enhance the proving experience will be detailed in a separate chapter. However, some features initially planned and some other which were later added and prioritized are worth to mention:
+
A first step was to implement a first version of state compression, whereby we simplify stored states so that they require less memory. This was achieved without compromising speed and is now always activated.
:*Possibility to highlight patterns in the ProverUI,
+
Furthermore, if the preference <tt>COMPRESSION</tt> is set to true, then ProB will also detect common (sub-)expressions in states and store the common expressions only once.
:*A better output providing warnings and errors in case of wrong or missing building configurations,
+
E.g., when several states have the same same value for a given variable <tt>x</tt> then its value will only be stored just once. This is particularly useful when complicated variables only change infrequently.
:*The switch to Eclipse 3.7,
 
:*A Handbook to complete and enhance the existing documentation.
 
  
* {{TODO}} An overview of the contribution about Mathematical extensions / Theory Plug-in (Issam Maamria)
+
Related to this aspect, the hashing of ProB states was improved on 64-bit architectures, which is also important in the context of detecting common subexpressions for sharing (common subexpressions are detected by hashing).
 +
We have also implemented a cryptographic SHA1 hashing function for Prolog terms, but it is not yet used in the production version of ProB.
  
* {{TODO}} An overview of the contribution about Plug-in Incompatibilities (All partners)
+
Finally, the most useful symmetry reduction technique of ProB is the so-called "hash marker" method.
 +
Here, we have also improved the computation of the hash symmetry markers, both achieving a reduction in size and runtime.
  
* {{TODO}} An overview of the contribution about Modularisation (Alexei Illiasov)
+
In addition, many improvements in constraint solving kernel were implemented.
  
* {{TODO}} An overview of the contribution about Decomposition (Renato Silva)
+
== Constraint-Based Checking ==
  
* {{TODO}} An overview of the contribution about Team-based Development (Colin Snook, Vitaly Savicks)
+
Improved Constraint-based checking for deadlocks, invariants and event sequences (used in MBT).
  
* {{TODO}} An overview of the contribution about UML-B (Colin Snook, Vitaly Savicks)
 
  
== An overview of the contribution about ProR (Michael Jastram) ==
+
== New Features ==
 +
=== Experiments with Theory Plugin ===
  
ProR is a replacement of the original requirements plug-in, which got discontinued in 2010.  It is based on the OMG ReqIF standard (<ref name="reqif">http://www.omg.org/spec/ReqIF/</ref>), which provides interoperability with industry tools.  It evolved into the Eclipse Foundation project "Requirements Modeling Framework" (RMF, <ref name="rmf">http://eclipse.org/rmf</ref>), resulting in significant visibility.  ProR is independent from Rodin.  Integration is achieved with a separate plug-in that provides support for traceability and model integration.
+
=== Support of finite operator===  
  
= Motivations =
+
=== Improved detection of infinite functions, and improved support for them===
The tasks to solve the issues faced by the DEPLOY partners have been listed and have been assigned to groups according to their priority. A high priority means a high need in the outcome of a given task. The group 1 has the highest priority, the group 2 has an intermediate priority, and the group 3 has the lowest priority. The group 4 concerns topics that could not be resourced during the lifetime of DEPLOY.The prover integrity item, although not being directly covered, has been partially addressed thanks to Isabelle and SMT integration. Unfortunately, the originally planned export of full proofs and integrity check was too ambitious to be fully achieved in the scope of DEPLOY.
 
  
{{SimpleHeader}}
+
=== Detection when infinite sets had to be approximated===
|-
 
! scope=col | Group 1 (highest priority) || Responsible
 
|-
 
|Performance <br /> - Core (large models, etc.) <br /> - GUI (incl. prover UI, edition, etc.) || SYSTEREL
 
|-
 
|Prover Performances <br /> - New rewriting rules / inference rules <br /> - Automatic tactics (preferences, timeout, etc.) || SYSTEREL
 
|-
 
|ProB Disprover (incl. counter examples to DLF POs) || Düsseldorf
 
|-
 
|Stability (crash, corruption, etc.)  || SYSTEREL
 
|-
 
|Editors || SYSTEREL/Düsseldorf
 
|-
 
|}
 
{{SimpleHeader}}
 
|-
 
! scope=col | Group 2 || Responsible
 
|-
 
| Prover Performances <br /> - SMT provers integration <br /> - connection with Isabelle  <br /> - Mathematical extensions <br /> - ProB || <br />SYSTEREL <br /> ETH Zürich <br /> Southampton/SYSTEREL <br /> Düsseldorf
 
|-
 
|Scalability <br /> - Decomposition <br /> - Modularisation plug-in <br /> - Team-based development || <br /> Southampton <br /> Newcastle <br /> Southampton
 
|-
 
|Plug-in incompatibilities || Newcastle
 
|-
 
|Model-based testing || Pitesti/Düsseldorf
 
|-
 
|ProR || Düsseldorf
 
|}
 
{{SimpleHeader}}
 
|-
 
! scope=col | Group 3 || Responsible
 
|-
 
|Scalability <br /> - Generic instantiation <br /> - UML-B maintenance <br /> || <br /> Southampton <br /> ETH Zürich/Southampton
 
|-
 
|Code Generation || Southampton
 
|}
 
{{SimpleHeader}}
 
|-
 
! scope=col | Group 4
 
|-
 
|Prover Integrity
 
|-
 
|Integrity of Code Generation
 
|}
 
== Platform maintenance ==
 
The platform maintenance, as it can be deduced from the above tables in section [[#Motivations | Motivations]], mainly concerned stability and performance improvement. These topics will be discussed and detailed in a separate chapter about scalability improvements.<br>
 
However, other improvements of utmost importance were made on the platform. These improvements either came from DEPLOY partners specific needs, or were corresponding to previously identified needs (listed in D32 - Model Construction tools & Analysis III Deliverable).
 
Hence we review below the motivations of some noteworthy implemented features:
 
* A Possibility to highlight patterns in the Prover UI.
 
This feature came from a request of DEPLOY partners<ref name="searchInPUI">https://sourceforge.net/tracker/?func=detail&atid=651672&aid=3092835&group_id=108850</ref>, often facing the need to find particular patterns such as expressions in long predicates (e.g. long goals). Since Rodin 2.2, and its new Proving UI interface, a nice feature was added, allowing to search and highlight a string pattern into the whole Proving UI views and editors. This function as also been enabled on direct selection of text in this UI.
 
* A better output providing warnings and errors in case of wrong or missing building configurations.
 
This issue, often seen as a bug or as a plug-in incompatibility, was raised when a user imports and tries to use a model on a platform with some missing required plug-ins. The user often thought his models corrupted whereas Rodin was not able to build them, and hid this information to the user. This is why, since Rodin 2.3, an output has been provided in such case, taking the form of warnings or errors that any user can understand and review. This is a first answer to Rodin plug-in incompatibilities issues.
 
* The switch to Eclipse 3.7.
 
Due to the major improvements made every year in Eclipse releases and the continuously growing number of contributing projects which are for some of them used as basis for Rodin plug-ins, the Rodin platform follows the evolution and is adapted every year quickly to the latest Eclipse version available. This year, Rodin 2.3 originated the switch from Eclipse 3.6 to Eclipse 3.7.
 
* A Handbook to complete and enhance the existing documentation.
 
At the DEPLOY Plenary Meeting in Zürich in 2010, it has been stated that the current documentation, in its state at that time, would not support a engineer starting using the tools without significant help of an expert <ref name="documentationoverhaul>http://wiki.event-b.org/index.php/User_Documentation_Overhaul</ref>. Significant efforts to improve the documentation were performed and coordinated by Düsseldorf, and took form of a handbook<ref name="RodinHandbook">http://handbook.event-b.org/</ref>. The Rodin handbook has the aim to minimize the access to an expert, by providing the necessary assistance to an engineer in the need to be productive using Event-B and the Rodin toolset. The contents of the handbook, user oriented, were originated by some contents of the Event-B wiki.
 
  
== Mathematical extensions / Theory Plug-in ==
+
== Experiments ==
{{TODO}} ''To be completed by Issam Maamria''
+
Conducted comparison with TLA+ model checker TLC
== Plug-in Incompatibilities ==
 
By its extensibility nature, the Rodin platform is susceptible to incompatibilities. Indeed, there are many ways in which incompatibilities could occur, and it occurred in the lifetime of DEPLOY. A good example, is the dependency management. Suppose that a bundle x_v1.0 is needed by a plug-in A (i.e. a dependency from A has been defined to x in at most the version 1.0) and installed in Rodin. Then the plug-in x_v1.1 is needed by a plug-in B. The both versions 1.0 and 1.1 of x could not be installed and used at the same time and create thus some usage incompatibility.
 
  
== Modularisation ==
+
= Motivations =
{{TODO}} ''To be completed by Alexei Illiasov''
+
{{TODO}} To be completed.
== Decomposition ==
+
The motivations for the state space compression arose from experiments in WP3 (space), and from applications of ProB outside of Deploy.
{{TODO}} ''To be completed by Renato Silva'' 
 
== Team-based Development ==
 
{{TODO}} ''To be completed by Colin Snook, Vitaly Savicks''
 
== UML-B ==
 
{{TODO}} ''To be completed by Colin Snook, Vitaly Savicks''
 
== ProR ==
 
 
 
While the original requirements plug-in for Rodin was useful as a prototype, a number of shortcomings lead to a new development.  In particular, the original plug-in was a traceability tool with externally managed requirements.  With ProR, requirements are authored and edited within Eclipse.  The original plug-in supported only a limited number of attributes and flat (unstructured) requirements.  ProR supports all data structures that the ReqIF standard<ref name="reqif">http://www.omg.org/spec/ReqIF/</ref> supports. Further, ReqIF-support for industry tools like Rational DOORS, MKS or IRqA is expected in the near future, while the original plug-in required a custom adaptor for each data format.
 
 
 
ProR is developed independently from Rodin.  Dependencies to Rodin exist only in the Rodin integration plug-in.  This significantly decreases the maintenance effort for the integration plugin, while increasing the visibility of ProR in the Open Source community.  The move of ProR from the University of Düsseldorf to the Eclipse Foundation increases visibility even further.  The Rodin integration plug-in is maintained as an independent project at github.
 
  
 
= Choices / Decisions =
 
= Choices / Decisions =
== Platform maintenance ==
+
{{TODO}} To be completed.
* Revisited task priority
 
This year, the process of giving priority to maintenance tasks was revisited according the the refocus mentioned above. The aim was to address all the major scalability issues before the end of DEPLOY. Thus, the requests coming from DEPLOY partners were given high priorities, and they were also prioritized against the already planned tasks coming from both DEPLOY partners and the Description of Work.
 
* Keep 32-bit versions of the Rodin platform on linux and windows systems
 
It was asked by end users to make both 32-bit and 64-bit versions of the Rodin platform available for Linux and Windows platforms. Only a 64-bit version of Rodin is available on Mac platforms as 32-bit Mac (early 2006) platforms are no longer maintained. The request to offer 64-bit was motivated by the possibility to increase for them the available Java heap size for some memory greedy platforms (these before 2.3). However, the drawbacks of assembling and maintaining more platforms (5 platforms instead of 3) and the corrections brought to the database which improved the memory consumption pushed away the limitations of the platform, made this request not relevant for now.
 
 
 
== Mathematical extensions / Theory Plug-in ==
 
{{TODO}} ''To be completed by Issam Maamria''
 
== Plug-in Incompatibilities ==
 
It has been decided in cooperation with all the WP9 partners to find better ways to address the plug-in incompatibility issues. First of all, the various partners refined the concept of "plug-in incompatibility". Hence, various aspects could be identified and some specific answers were given to each of them. The user could then defined more clearly the incompatibility faced. Plug-in incompatibilities can be separated in two categories:
 
:* Rodin platform/plug-in incompatibilities, due to some wrong match between Rodin included packages and the plug-in dependencies (i.e. needed packages). These incompatibilities, when reported, allowed the plug-in developers to contact SYSTEREL in charge of managing the packages shipped with a given version of Rodin. It could also allow traceability of incompatibilities and information to the user through a specific and actualized table on each Rodin release notes page on the Wiki<ref name="incompTableA">http://wiki.event-b.org/index.php/Rodin_Platform_Releases#Current_plug-ins</ref>.
 
:* Plug-in/plug-in incompatibilities, due to some wrong match between needed/installed packages, or API/resources incompatible usage. A table was created on each release notes wiki page, and a procedure was defined<ref name="incompTableB">http://wiki.event-b.org/index.php/Rodin_Platform_Releases#Known_plug-in_incompatibilities</ref> so that identified incompatibilities are listed and corrected by the concerned developers.
 
It appeared that cases of using a model which references some missing plug-ins were formerly often seen as compatibility issues although they were not.<br>
 
After the incompatibilities have been identified, the developing counterparts being concerned assigned special tasks and coordination to solve issues the soonest as possible. Incompatibilities are often due to little glitches or desynchronisation and such direct coordination of counterpart appeared appropriate because quick and effective.
 
 
 
== Modularisation ==
 
{{TODO}} ''To be completed by Alexei Illiasov''
 
== Decomposition ==
 
{{TODO}} ''To be completed by Renato Silva'' 
 
== Team-based Development ==
 
{{TODO}} ''To be completed by Colin Snook, Vitaly Savicks''
 
== UML-B ==
 
{{TODO}} ''To be completed by Colin Snook, Vitaly Savicks''
 
== ProR ==
 
 
 
The following key decisions were made when developing ProR:
 
  
* '''New development, rather than continuing the original plug-in''' - the architecture of ProR differs significantly from that of the original plug-in (see [[D45_General_Platform_Maintenance#ProR]].  In addition, new technologies like EMF promised a cleaner, more powerful framework for an implementation.
+
Aggressive compression can also induce a performance penalty.
 +
The new default mode was chosen such that there should be no performance penalty, with reduced memory usage.
 +
(Indeed, the time for compression is regained by reduced time to store and retrieve the states.)
  
* '''ReqIF as the underlying data model''' - the ReqIF standard <ref name="reqif">http://www.omg.org/spec/ReqIF/</ref> is gaining traction and promises interoperability with industry tools. In addition, a digital version of the data model was available for free and could serve as the foundation for the model code.
+
A more aggressive setting can be forced by <tt>-p COMPRESSION TRUE</tt>. This will further reduce memory consumption, but may increase runtime (although quite often it does not).
 
 
* '''The Eclipse Modeling Framework''' (EMF) was identified as a technology that would allow a quick and clean foundation for an implementation.  Further, the Rodin EMF-plug-in represents a convenient interface for integrating ProR and ProB.  Last, the digital data model from the OMG could be imported directly into EMF and used for generating the model code.
 
 
 
* '''Keeping ProR independent from Rodin''' - There is significant interest in ReqIF right now, but this interest is unrelated to formal methods.  By providing an implementation that is independent from Rodin, we have a much larger target group of potential users and developers.  By carefully designing extension points, we can still provide a powerful Rodin integration.
 
 
 
* '''Eclipse Foundation Project''' - we were actively establishing an open source community around ProR.  By recruiting engaged partners early on, development progressed faster than anticipated.  By becoming an Eclipse Foundation project <ref name="rmf">http://eclipse.org/rmf</ref>, we exceeded our goals in this respect.
 
  
 
= Available Documentation =
 
= Available Documentation =
* Core platform:
+
{{TODO}} To be completed.
:The following pages give useful information about the Rodin platform releases:
 
:* Release notes<ref>http://wiki.event-b.org/index.php/Rodin_Platform_Releases</ref>.
 
:* Bugs<ref>https://sourceforge.net/tracker/?group_id=108850&atid=651669</ref>.
 
:* Feature requests<ref>https://sourceforge.net/tracker/?group_id=108850&atid=651672</ref>.
 
*The Rodin handbook is proposed as a PDF version and a HTML version and a dedicated plug-in makes it available as help within Rodin<ref name="RodinHandbook">http://handbook.event-b.org/</ref>.
 
  
*{{TODO}}  Links for Mathematical extensions / Theory Plug-in
+
* [http://www.stups.uni-duesseldorf.de/ProB/index.php5/Using_the_Command-Line_Version_of_ProB Command-Line Version of ProB]
*{{TODO}}  Links for Modularisation
+
* [http://www.stups.uni-duesseldorf.de/w/Special:Publication/HaLe2011 Constraint-Based Deadlock Checking of High-Level Specifications. In Proceedings ICLP'2011 (to appear), Cambridge University Press, 2011.]
*{{TODO}}  Links for Decomposition
+
* [http://www.stups.uni-duesseldorf.de/w/Special:Publication/HansenLeuschelTLA2012 Translating TLA+ to B and experiments with TLC]
*{{TODO}}  Links for Team-based Development
 
*{{TODO}}  Links for UML-B
 
* Links for ProR
 
** ProR at the Eclipse Foundation <ref name="rmf">http://eclipse.org/rmf</ref>
 
** ProR Documentation for end users and plugin developers <ref>http://pror.org</ref>
 
  
 
= Status =
 
= Status =
== Platform maintenance ==
+
{{TODO}} To be completed.
By the end of the project, there are :
 
* xx bugs reported and open. All with a priority lower or equal to 5.
 
* xx feature requests expressed and still open.
 
 
 
== Mathematical extensions / Theory Plug-in ==
 
{{TODO}} ''To be completed by Issam Maamria''
 
== Plug-in Incompatibilities ==
 
As the time of writing this deliverable, no plug-in incompatibilities are left or known to exist between the platform and plug-ins or between plug-ins.
 
 
 
== Modularisation ==
 
{{TODO}} ''To be completed by Alexei Illiasov''
 
== Decomposition ==
 
{{TODO}} ''To be completed by Renato Silva'' 
 
== Team-based Development ==
 
{{TODO}} ''To be completed by Colin Snook, Vitaly Savicks''
 
== UML-B ==
 
{{TODO}} ''To be completed by Colin Snook, Vitaly Savicks''
 
== ProR ==
 
 
 
ProR took on a life on its own as part of the Requirements Modeling Framework<ref name="rmf">http://eclipse.org/rmf</ref>.  It is currently in the incubation stage of an Eclipse project.  There are currently five committers in total, with two from the Rodin project, namely Michael Jastram (Project Lead) and Lukas Ladenberger.
 
 
 
The Rodin integration supports:
 
 
 
* Creating traces between model elements and requirements
 
* Highlighting of model elements in the requirements text
 
* Marking of invalidated traces, where either the requirement or model element had changed.
 
  
The Rodin integration is hosted at GitHub.
+
The improved hashing and light-weight state compression is available in the current release of ProB.
 +
The SHA1 hash technique is not available in the current release.
 +
The research on further compression technique is ongoing and will be continued within the project ADVANCE.
  
= References =
 
<references/>
 
  
 
[[Category:D45 Deliverable]]
 
[[Category:D45 Deliverable]]

Revision as of 11:22, 14 March 2012

Overview

TODO An overview of the work done about model checking.

State Space Reduction, Compression and Hashing

Driven by a case study from the space sector (a protocol modeled by SSF), where memory consumption was an issue, we have investigated ways to reduce ProB's memory consumption. A first step was to implement a first version of state compression, whereby we simplify stored states so that they require less memory. This was achieved without compromising speed and is now always activated. Furthermore, if the preference COMPRESSION is set to true, then ProB will also detect common (sub-)expressions in states and store the common expressions only once. E.g., when several states have the same same value for a given variable x then its value will only be stored just once. This is particularly useful when complicated variables only change infrequently.

Related to this aspect, the hashing of ProB states was improved on 64-bit architectures, which is also important in the context of detecting common subexpressions for sharing (common subexpressions are detected by hashing). We have also implemented a cryptographic SHA1 hashing function for Prolog terms, but it is not yet used in the production version of ProB.

Finally, the most useful symmetry reduction technique of ProB is the so-called "hash marker" method. Here, we have also improved the computation of the hash symmetry markers, both achieving a reduction in size and runtime.

In addition, many improvements in constraint solving kernel were implemented.

Constraint-Based Checking

Improved Constraint-based checking for deadlocks, invariants and event sequences (used in MBT).


New Features

Experiments with Theory Plugin

Support of finite operator

Improved detection of infinite functions, and improved support for them

Detection when infinite sets had to be approximated

Experiments

Conducted comparison with TLA+ model checker TLC

Motivations

TODO To be completed. The motivations for the state space compression arose from experiments in WP3 (space), and from applications of ProB outside of Deploy.

Choices / Decisions

TODO To be completed.

Aggressive compression can also induce a performance penalty. The new default mode was chosen such that there should be no performance penalty, with reduced memory usage. (Indeed, the time for compression is regained by reduced time to store and retrieve the states.)

A more aggressive setting can be forced by -p COMPRESSION TRUE. This will further reduce memory consumption, but may increase runtime (although quite often it does not).

Available Documentation

TODO To be completed.

Status

TODO To be completed.

The improved hashing and light-weight state compression is available in the current release of ProB. The SHA1 hash technique is not available in the current release. The research on further compression technique is ongoing and will be continued within the project ADVANCE.