Difference between pages "Tasking Event-B Tutorial" and "Rodin Workshop 2021"

From Event-B
(Difference between pages)
Jump to navigationJump to search
imported>Andy
 
 
Line 1: Line 1:
THIS PAGE IS UNDER CONSTRUCTION !!!!!!
+
==9th Rodin User and Developer Workshop==
  
For more information contact Andy Edmunds - University of Southampton - mailto:ae2@ecs.soton.ac.uk
+
The 9th Rodin User and Developer Workshop, 8 June, 2021, Ulm, Germany (Virtual)
=== Tasking Event-B Tutorial Overview ===
 
  
This code generation tutorial supplements the Heating Controller tutorial example, and makes use of example projects from the download site. The code generation stage produces implementable Ada code, and also an Event-B project which models the implementation. The Ada code is produced using a pretty printer tool from an intermediate model, the Common Language model (IL1), generated by a translation tool. An overview of Tasking Event-B can be found on the [[Tasking_Event-B_Overview]] page.
+
''The proceedings of the workshop is now available as a [technical report] at the University of Southampton.''
  
The Heating Controller development has been refined to the point where we wish to add implementation constructs. The Event-B language is not expressive enough to fully describe the implementation. Tasking Event-B facilitates this final step to implementation, by extending Event-B with the necessary constructs. Event-B machines that are to be implemented (and their seen Contexts) are selected and added to a ''Tasking Development''; the Tasking Development files have the file extension ''.tasking''. The machines in the Tasking Development are then extended with implementation details.
+
The programme now available on [https://abz2021.uni-ulm.de/program-overview  the ABZ2021 website] and [[#Programme|below]] (with texts).
  
The example/tutorial projects are,
+
Event-B is a formal method for system-level modelling and analysis. The
 +
Rodin Platform is an Eclipse-based toolset for Event-B that provides
 +
effective support for modelling and automated proof. The platform is open
 +
source and is further extendable with plug-ins. A range of plug-ins have
 +
already been developed.
  
{| border="1"
+
The 9th Rodin workshop will be collocated with the [https://abz2021.uni-ulm.de/ ABZ 2021 Conference].  
|Heating_ControllerTutorial_Completed
 
|An example project with a completed Tasking Development and IL1 model (post IL1 translation, but before Event-B translation).
 
|-
 
|Heating_ControllerTutorial_Completed_Gen
 
|Same as the example project above, but with Event-B model translations. The difference being that this development includes a model of the implementation. These are refinements that include a program counter to describe flow of execution in each task.
 
|-
 
|Heating_ControllerTutorial_Step1
 
|A bare project for step 1 of the [[Code_Generation_Tutorial#The_Tutorial |tutorial]].
 
|-
 
|Heating_ControllerTutorial_Step2
 
|A partially completed tasking development for steps 2, 3 and 4 of the [[Code_Generation_Tutorial#The_Tutorial |tutorial]].
 
|}
 
  
== Preliminaries ==
+
The purpose of this workshop  is to bring together existing and potential
Before further discussion of the modelling aspects, we take a look at the PrettyPrint viewers. The PrettyPrinters make the viewing of IL1 and tasking models easier; it also provides a route to generate source code. The source code can easily be pasted from the IL1 Pretty Printer window into an the Ada source file .
+
users and developers of the Rodin  toolset and to foster a broader community
==== The PrettyPrint View of a Tasking Development ====
+
of Rodin users and developers.
To open the Tasking PrettyPrint viewer,
 
* from the top-menu select ''Window/Show View/Other/Tasking Pretty Printer''.
 
  
Note that the Tasking PrettyPrinter may have to be closed when editing the Tasking Development, since it can give rise to exceptions. The PrettyPrinter would need further work to make it robust, however it is intended only as a short-term solution.
+
For Rodin users the workshop will provide an opportunity to share tool
 +
experiences and to gain an understanding of on-going tool developments.
 +
For plug-in developers the workshop will provide an opportunity to showcase
 +
their tools and to achieve better coordination of tool development effort.
  
* Open the ''Heating_ControllerTutorial_Completed'' Project and switch to the Resource Perspective.
 
* Open the ''.tasking'' model and inspect it. Clicking on the Main, Machine or Event nodes updates the pretty print window.
 
  
==== Viewing Source Code ====
+
=== Programme ===
aka. The PrettyPrint View of an IL1 Model.
 
  
To view Ada source code,
+
'''09:00 - 10:30'''
* from the top-menu select ''Window/Show View/Other/IL1 Pretty Printer''.
+
* Domain knowledge as Ontology-based Event-B Theories - ''I. Mendil, Y. Aït-Ameur, N. K. Singh, D. Méry, and P. Palanque'' ([[Media:RodinWorkshop2021_Domain knowledge as Ontology-based Event-B Theories.pdf|pdf]], [[Media:RodinWorkshop2021_Domain knowledge as Ontology-based Event-B Theories_slides.pdf|slides]])
* Open the ''Heating_ControllerTutorial_Completed'' Project and switch to the Resource Perspective.
+
* OntoEventB: A Generator of Event-B contexts from Ontologies - ''Idir Ait-Sadoune'' ([[Media:RodinWorkshop2021_OntoEventB.pdf|pdf]], [[Media:RodinWorkshop2021_OntoEventB_slides.pdf|slides]])
* Open the ''.il1'' model and inspect it. Clicking on the Protected, Main Entry, or Task nodes updates the pretty print window.
+
* EVBT — an Event-B tool for code generation and documentation - ''Fredrik Öhrström'' ([[Media:RodinWorkshop2021_EVBT.pdf|pdf]])
 +
* Scenario Checker: An Event-B tool for validating abstract models - ''Colin Snook, Thai Son Hoang, Asieh Salehi Fathabadi, Dana Dghaym, Michael Butler'' ([[Media:RodinWorkshop2021_Scenario Checker.pdf|pdf]], [[Media:RodinWorkshop2021_Scenario Checker_slides.pdf|slides]])
  
==== Cleaning the Tasking Development ====
+
'''10:30 - 11:00''' ''Break''
If the ''.tasking'' file has errors, then it may need cleaning. To do this right-click on the ''Main'' node, select ''Epsilon Translation/CleanUp''. If a model has errors it can still be viewed by clicking on the ''Selection'' tab at the bottom of the tasking editor window.
 
  
== The Tutorial ==
+
'''11:00--12:30'''
The steps needed to generate code from an Event-B model, in this tutorial, are as follows,
+
* Context instantiation plug-in: a new approach to genericity in Rodin - ''Guillaume Verdier, Laurent Voisin'' ([[Media:RodinWorkshop2021_Context instantiation plug-in.pdf|pdf]], [[Media:RodinWorkshop2021_Context instantiation plug-in_slides.pdf|slides]])
* Step 1 - [[Tasking Event-B_Tutorial#Creating The Tasking Development|Create the tasking development]].
+
* Examples of using the Instantiation Plug-in - ''Dominique Cansell, Jean-Raymond Abrial'' ([[Media:RodinWorkshop2021_Examples of using the Instantiation Plug-in.pdf|pdf]], [[MEDIA:RodinWorkshop2021_Examples of using the Instantiation Plug-in_slides.pdf|slides]])
* Step 2 - [[Tasking Event-B_Tutorial#Providing the Annotations for Implementations|Add Tasking annotations]].
+
* Data-types definitions: Use of Theory and Context instantiations Plugins - ''Peter Riviere, Yamine Ait-Ameur, and Neeraj Kumar Singh'' ([[Media:RodinWorkshop2021_Data-types_definitions.pdf|pdf]], [[Media:RodinWorkshop2021_Data-types_definitions_slides.pdf|slides]])
* Step 3 - [[Tasking Event-B_Tutorial#Optional Annotations for Addressed Variables|Add annotations for addressed variables (optional)]].
+
* Towards CamilleX 3.0 - ''Thai Son Hoang, Colin Snook, Asieh Salehi Fathabadi, Dana Dghaym, Michael Butler'' ([[Media:RodinWorkshop2021_Towards CamilleX 3.0.pdf|pdf]], [[Media:RodinWorkshop2021_Towards CamilleX 3.0_slides.pdf|slides]])
* Step 4 - [[Tasking Event-B_Tutorial#Invoking the Translation|Invoke translators]].
 
  
==== Creating The Tasking Development ====
+
'''12:30--13:30''' ''Lunch''
* Change to the Event-B Perspective.
 
* Open the ''HeatingController20110429Tutorial'' Project.
 
* Select the following Machines: Display_Update_Task1, Envir1, Heater_Monitor_Task1, Shared_Object1, Temp_Ctrl_Task1 and HC_CONTEXT.
 
* Right-click and select ''Make Tasking Development/Generate Tasking Development''.
 
  
The new Tasking Development will not be visible in the Event-B perspective, change to the resource perspective, open and inspect the new ''.tasking'' file. The Tasking Development contains (the EMF representation of) the machines that we wish to provide implementations for. In order to introduce the new concepts we have prepared a partially complete development.  
+
'''13:30--15:00'''
 +
* Keynote: Safety and Security Case Study Experiences with Event-B and Rodin - ''Jonathan Hammond, Capgemini Engineering'' ([[Media:RodinWorkshop2021_Safety and Security Case Study Experiences with Event-B and Rodin.pdf|slides]])
 +
* Large Scale Biological Models in Rodin - ''Usman Sanwal, Thai Son Hoang, Luigia Petre, and Ion Petre'' ([[Media:RodinWorkshop2021_Large Scale Biological Models in Rodin.pdf|pdf]], [[Media:RodinWorkshop2021_Large Scale Biological Models in Rodin_slides.pdf|slides]])
 +
* Formal Verification of EULYNX Models Using Event-B and RODIN - ''Abdul Rasheeq, Shubhangi Salunkhe'' ([[Media:RodinWorkshop2021_Formal Verification of EULYNX Models Using Event-B and RODIN.pdf|pdf]], [[MEDIA:RodinWorkshop2021_Formal Verification of EULYNX Models Using Event-B and RODIN_slides.pdf|slides]])
  
Change to the Project ''HeatingController20110429Tutorial2'' to begin the next step.
+
=== Organisers ===
 
+
<p>Chair: Asieh Salehi Fathabadi, University of Southampton, UK</p>
==== Providing the Annotations for Implementations ====
+
<p>Co-chair: Thai Son Hoang, University of Southampton, UK</p>
* Close any Tasking Pretty Print Viewers that remain open. The incomplete model will give rise to exceptions.
+
<p>Co-chair: Colin Snook, University of Southampton, UK</p>
* Go to the to the Resource Perspective.
+
<p>Co-chair: Yamine Ait Ameur, Toulouse National Polytechnique Institute, France</p>
* Open and inspect the ''.tasking'' machine.
 
 
 
The ''Display_Update_Task1'', ''Envir1'' and ''Shared_Object1'' machines are incomplete. We will take the necessary steps to provide implementation details.
 
 
 
===== The Display_Update_Task1 Machine =====
 
In the partially complete tutorial project we already identified the ''Display_Update_Task1'' as an ''Auto Task'' Tasking Machine, by adding the ''Auto Task'' extension. ''Auto Tasks'' are tasks that will be declared and defined in the ''Main'' procedure of the implementation. The effect of this is that the ''Auto Tasks'' are created when the program first loads, and then activated (made ready to run) before the ''Main'' procedure body runs. We have added the ''Periodic Task'' extension to the ''Auto Task'', and set a period of 500 milliseconds. We will now complete the sequence that has been partially defined in the task body.
 
 
 
TO HERE!!!
 
 
 
*'''Add Synchronisation between TWrite and SWrite'''.
 
** Expand the ''Auto Task Machine'' node.
 
** Expand the ''Seq'' sub-tree.
 
** Right-click on the ''Seq'' node and select ''New Child/Left Branch EventWrapper''.
 
** Provide the event label ''w1'' using the properties view.
 
** Right-click on Event Wrapper and select ''New Child/ Synch Events''.
 
** Select ''Synch Events'' and go to the drop-down menu of the ''Local Event'' property.
 
** At this point the drop-down box displays a number of event names, select the ''TWrite'' event.
 
** Go to the drop-down menu of the ''Remote Event'' property.
 
** From the list of events select the ''SWrite'' event.
 
 
 
The Synch Events construct is used to implement [[Tasking Event-B Overview#Control Constructs|Event Synchronisation]]. The next step wraps an event in an Event Wrapper in order to update the local state; there is no synchronisation as such but we will re-use the constructs that already exist.
 
 
 
*'''Add the Wrapped Event TcalcWVal'''.
 
** Expand the sub-tree of the second ''Seq'' node.
 
** Right-click on the ''Seq'' node and select ''New Child/Left Branch EventWrapper''.
 
** Provide the event label ''w2'' using the properties view.
 
** Right-click on Event Wrapper and select ''New Child/ Synch Events''.
 
** Select ''Synch Events'' and go to the drop-down menu of the ''Local Event'' property.
 
** From the list of events select the ''TcalcWVal'' event.
 
 
 
We have now completed the task body, and it just remains to complete provide details for the ''TWrite'' event. The ''TWrite'' event in ''WriterTsk'' is to be synchronized with the ''SWrite'' event in the ''SharedObj''.
 
*'''Add Event Extensions'''.
 
** Right-click on the ''TWrite'' Event node.
 
** Select ''New Child/Extension''.
 
** Right-click on the ''Extension'' node and select ''New Child/Implementation'' from the menu.
 
** Go to the Implementation properties view and set the ''Implementation Type'' property to ''ProcedureSynch''.
 
 
 
*'''Identify Incoming and Outgoing parameters'''.
 
** Right-click on the ''outAP'' node and add an ''Extension''.
 
** Right-click on the ''Extension'' and select''New Child/Parameter Type''.
 
** Go to the ''Parameter Type'' properties view and set the ''Parameter Type'' property to ''actualOut''.
 
** Right-click on the ''inAP'' node and add an ''Extension''.
 
** Right-click on the ''Extension'' and select''New Child/Parameter Type''.
 
** Go to the ''Parameter Type'' properties view and set the ''Parameter Type'' property to ''actualIn''.
 
 
 
===== The Shared Machine =====
 
 
 
The next step is to identify the ''SharedObj'' machine as a ''Shared Machine''. The ''SharedObj'' Machine will be extended using the Event-B EMF extension mechanism.
 
* Right-click on the ''SharedObj'' Machine node in the ''.tasking'' file.
 
* Select ''New Child/Extension''.
 
* Right-click on the ''Extension'' node and select ''New Child/Shared Machine'' from the menu.
 
 
 
We now show how to extend the ''SWrite'' event of the Shared Machine with details about its implementation. The ''SWrite'' event in ''SharedObj'' is to be synchronized with the ''TWrite'' event in the ''WriterTsk''.
 
* '''Identify SWrite as a Syncronisation'''.
 
** Right-click on the ''SWrite'' Event node.
 
** Select ''New Child/Extension''.
 
** Right-click on the ''Extension'' node and select ''New Child/Implementation'' from the menu.
 
** Go to the Implementation properties view and set the ''Implementation Type'' property to ''ProcedureSynch''.
 
 
 
* '''Identify incoming and outgoing parameters'''.
 
** Right-click on the ''inFP'' node and add an ''Extension''.
 
** Right-click on the ''Extension'' and select''New Child/Parameter Type''.
 
** Go to the ''Parameter Type'' properties view and set the ''Parameter Type'' property to ''formalIn''.
 
** Right-click on the ''outFP'' node and add an ''Extension''.
 
** Right-click on the ''Extension'' and select''New Child/Parameter Type''.
 
** Go to the ''Parameter Type'' properties view and set the ''Parameter Type'' property to ''formalOut''.
 
 
 
==== Optional Annotations for Addressed Variables ====
 
 
 
Link To Addressed Variables!!!!!
 
 
 
 
 
===== A Summary of Steps =====
 
 
 
For a Tasking Machine definition:
 
# Add the Tasking Machine type (Auto etc).
 
# Add the task type (Periodic etc.).
 
# Define the task priority.
 
# Define the task body.
 
# For each event, add the Event Type.
 
# For each event parameter, add the Parameter Type.
 
# Optionally define addressed variables.
 
 
 
For a Shared Machine definition:
 
# Add the ''SharedMachine'' Machine type.
 
# For each event, define the Event Type.
 
# For each event parameter, define the Parameter Type.
 
 
 
==== Invoking the Translation ====
 
 
 
* To create the IL1 model,
 
** Right-Click on the Main node, select ''Epsilon Translation/Translate Task Mch 2 IL1 EMF''.
 
** Open the Resource Perspective.
 
** Right-click on the ''sharedbuffer20100819Tutorial2'' project folder.
 
** Select refresh, the ''.il1'' file should appear in the project.
 
** Open and inspect the file, and view the source code by opening the IL1 Pretty Print view if desired.
 
 
 
* To create the Event-B model of the implementation,
 
** Return to the Rodin Modelling Perspective.
 
** Right-Click on the Main node, select ''Epsilon Translation/Translate Task Mch 2 Event-B EMF''.
 
** The ''sharedbuffer20100819bTasking'' project is generated, it can be opened and inspected.
 
 
 
There are errors in the generated machines (not investigated the cause yet); these can be fixed in the following way.
 
* Open a Machine in the Event-B Machine Editor.
 
* Select the Edit tab.
 
* Open the REFINES section, the error lies here.
 
* The correct machine is refined, but choose a different machine to refine (any one, it doesn't matter).
 
* Select the original refined machine again.
 
* Save and clean the project, and the error should disappear.
 
* Repeat for the same errors in the other machines; save and clean again.
 
* The machines can viewed as normal using the Rodin editors.
 
 
 
[[Category:User documentation]]
 

Latest revision as of 09:41, 29 June 2021

9th Rodin User and Developer Workshop

The 9th Rodin User and Developer Workshop, 8 June, 2021, Ulm, Germany (Virtual)

The proceedings of the workshop is now available as a [technical report] at the University of Southampton.

The programme now available on the ABZ2021 website and below (with texts).

Event-B is a formal method for system-level modelling and analysis. The Rodin Platform is an Eclipse-based toolset for Event-B that provides effective support for modelling and automated proof. The platform is open source and is further extendable with plug-ins. A range of plug-ins have already been developed.

The 9th Rodin workshop will be collocated with the ABZ 2021 Conference.

The purpose of this workshop is to bring together existing and potential users and developers of the Rodin toolset and to foster a broader community of Rodin users and developers.

For Rodin users the workshop will provide an opportunity to share tool experiences and to gain an understanding of on-going tool developments. For plug-in developers the workshop will provide an opportunity to showcase their tools and to achieve better coordination of tool development effort.


Programme

09:00 - 10:30

  • Domain knowledge as Ontology-based Event-B Theories - I. Mendil, Y. Aït-Ameur, N. K. Singh, D. Méry, and P. Palanque (pdf, slides)
  • OntoEventB: A Generator of Event-B contexts from Ontologies - Idir Ait-Sadoune (pdf, slides)
  • EVBT — an Event-B tool for code generation and documentation - Fredrik Öhrström (pdf)
  • Scenario Checker: An Event-B tool for validating abstract models - Colin Snook, Thai Son Hoang, Asieh Salehi Fathabadi, Dana Dghaym, Michael Butler (pdf, slides)

10:30 - 11:00 Break

11:00--12:30

  • Context instantiation plug-in: a new approach to genericity in Rodin - Guillaume Verdier, Laurent Voisin (pdf, slides)
  • Examples of using the Instantiation Plug-in - Dominique Cansell, Jean-Raymond Abrial (pdf, slides)
  • Data-types definitions: Use of Theory and Context instantiations Plugins - Peter Riviere, Yamine Ait-Ameur, and Neeraj Kumar Singh (pdf, slides)
  • Towards CamilleX 3.0 - Thai Son Hoang, Colin Snook, Asieh Salehi Fathabadi, Dana Dghaym, Michael Butler (pdf, slides)

12:30--13:30 Lunch

13:30--15:00

  • Keynote: Safety and Security Case Study Experiences with Event-B and Rodin - Jonathan Hammond, Capgemini Engineering (slides)
  • Large Scale Biological Models in Rodin - Usman Sanwal, Thai Son Hoang, Luigia Petre, and Ion Petre (pdf, slides)
  • Formal Verification of EULYNX Models Using Event-B and RODIN - Abdul Rasheeq, Shubhangi Salunkhe (pdf, slides)

Organisers

Chair: Asieh Salehi Fathabadi, University of Southampton, UK

Co-chair: Thai Son Hoang, University of Southampton, UK

Co-chair: Colin Snook, University of Southampton, UK

Co-chair: Yamine Ait Ameur, Toulouse National Polytechnique Institute, France