Difference between pages "Strengthening the AST Library for Rodin 3.0" and "Tasking Event-B Overview"

From Event-B
(Difference between pages)
Jump to navigationJump to search
imported>Vinmont
 
imported>Andy
 
Line 1: Line 1:
A part of the Rodin 3.0 development aims to strengthen the AST library. This page explains the choices we have done during this step.
+
=== Tasking Event-B ===
 +
Tasking Event-B can be viewed as an extension of the existing Event-B language. We use the existing approaches of refinement and decomposition to structure a project that is suitable for a Tasking Development. During the modelling phase parameters are introduced to facilitate decomposition. As a result of the decomposition process, parameters become part of the interface that enables event synchronization. We make use of this interface and add information (see [[#Implementing Events]]) to facilitate code generation. The tasking extension consists of the constructs in the following table.
  
== Type Environment ==
+
<center>
Type environments have changed in Rodin 3.0 in order to reinforce their good use and their robustness.  
+
{| border="1"
First of all we add a new mechanism to add given sets implicitly introduced by types when new elements are added.
+
!Construct
Then we create the inferred type environment Java type to could differentiate a classical type environment and an inferred one which now references its initial type environment. This type is now used in the type checking result. Since an inferred type environment content depends on its initial type environment it was a necessary modification to could express all possible inferred type environments.
+
!Options
Finally we add mechanism to separate mutable and immutable type environments by creating two children interfaces of the type environment interface, {{class|ITypeEnvironmentBuilder}} and {{class|ISealedTypeEnvironment}}. This mechanism provides a strong guarantee that a type environment will not be modified if necessary and allows at the same time to be flexible when it is needed (see [[Rodin 3.0 Plug-in Migration Guide]] for more information).
+
|-
 +
|Machine Type
 +
|DeclaredTask, [http://wiki.event-b.org/index.php/Tasking_Event-B_Overview#Tasking_Machines AutoTask], [http://wiki.event-b.org/index.php/Tasking_Event-B_Overview#Shared_Machines SharedMachine], [http://wiki.event-b.org/index.php/Tasking_Event-B_Overview#The_Environ_Machine Environ]
 +
|-
 +
|[http://wiki.event-b.org/index.php/Tasking_Event-B_Overview#Control_Constructs Control]
 +
|Sequence, Loop, Branch, Event, Output
 +
|-
 +
|[http://wiki.event-b.org/index.php/Tasking_Event-B_Overview#Tasking_Machines Task Type]
 +
|Periodic(n), Triggered, Repeating, OneShot
 +
|-
 +
|Priority
 +
| -
 +
|-
 +
|[http://wiki.event-b.org/index.php/Tasking_Event-B_Overview#Implementing_Events Event Role]
 +
| Actuating, Sensing
 +
|-
 +
|[http://wiki.event-b.org/index.php/Tasking_Event-B_Overview#Addressed_Variables Addressed Variable]
 +
|Address, Base
 +
|}
 +
</center>
  
== Type Checking ==
+
==== Tasking Machines ====
The type checking step has been strengthened to avoid that the type checker accepts given types implicitly introducing given sets incompatibles with the type environment and thus free identifiers. It also allowed to detect and correct a new occurrence of the bug #635 (old name #3574565) that was leading on a incoherent result of the formula type checking since the formula was not correctly type checked but the result was indicating a success.
+
The following constructs relate to Tasking and Environ Machines, and provide implementation details. Timing of periodic tasks is not modelled formally. Tasking and Environ Machines model Ada tasks, so they can be implemented easily in Ada; in C using the pthread library, or in Java using threads.
  
Regarding the legibility for identifiers no modification has been done, that is to say that if the same name is used for a free and bound identifiers then the bound identifier will be renamed since it is identified by its Bruijn number.
+
* Tasking Machines may be one of the following types:
 +
** AutoTasks - Anonymous Tasks running from start-up.
 +
** Declared tasks - (Not currently used) A task template relating to an Ada ''tasktype'' declaration.  
  
The modification of the type checking step introduces the following modifications:
+
''Auto Tasks'' are tasks that will be declared and defined in the ''Main'' procedure of the implementation. The effect of this is that the ''Auto Tasks'' are created when the program first loads, and then activated (made ready to run) before the ''Main'' procedure body runs.
* In the ''typecheck()'' procedure of nodes, we now analyse the type of the nodes that could introduce new given sets and add those given sets to the resulting inferred type environment. It guarantees that incompatible free identifiers names or given sets are not introduced.
 
* In the ''synthesize()'' procedure, that is executed a first time at node creation and a second time during solving types step, we now add the given sets introduced by given types as free identifiers on concerned nodes. As a consequence if a given set and a free identifier have a name conflict it will also be detected during this step. Particularly it will provide a way to detect and raise an {{class|IllegalArgumentException}} when an invalid type is provided at node creation.
 
* If the whole type checking procedure succeeds then all free identifiers are checked and added to the inferred environment if necessary.
 
  
== AST nodes construction ==
+
* Tasking and Environ Machines options are:
AST nodes construction is possible using {{class|FormulaFactory}} methods (direct access to constructors is now explicitly forbidden) and has been strengthened by verifying that arguments provided are valid regarding constructed node. Those verifications are documented with the exceptions raised when conditions on arguments are not respected. It allows to avoid exceptions raised later for which source is more complicated to locate.
+
** TaskType - Defines the scheduling, cycle and lifetime of a task. i.e. one-shot periodic or triggered. The period of a task is specified in milliseconds.
 +
** Priority - An integer value is supplied, the task with the highest value priority takes precedence when being scheduled. The default priority is 5.
  
[[Category:Design]]
+
==== Shared Machines ====
[[Category:Developer documentation]]
+
A Shared Machine models a protected resource, such as a monitor. It may be implemented in Ada as a Protected Object, in C using mutex locking, or in Java as a monitor.
 +
 
 +
* A Shared Machine is identified using the ''Shared Machine'' annotation.
 +
 
 +
==== The Environ Machine ====
 +
An Environ machine is a model of the environment. It can be used to generate code for use in a simulation, or be discarded in the case that a simulated environment is not required.
 +
 
 +
* An Environ Machine is identified using the ''Environ Machine'' annotation.
 +
 
 +
=== Control of Program Flow ===
 +
At the implementation stage we need to think about controlling the flow of execution; and where interaction with the environment is concerned, how events should be implemented. The following section describes the constructs that we have introduced to facilitate this.
 +
==== Control Constructs ====
 +
Each Tasking Machine has a ''task body'' which contains the flow control (algorithmic constructs).
 +
 
 +
* We have the following constructs available in the Tasking Machine body:
 +
** Sequence - for imposing an order on events.
 +
** Branch - choice between a number of mutually exclusive events.
 +
** Loop - event repetition while it's guard remains true.
 +
** Event - a wrapper for the Event-B element (soon to be redundant). 
 +
** Text Output - writes textual output to the screen.
 +
 
 +
The syntax for task bodies, as used in the Rose TaskBody editor, is as follows:
 +
 
 +
<br/>
 +
[[Image:Syntax.png]]
 +
<br/>
 +
 
 +
The ''String'' will be an event name, a variable name, or a text fragment to be output to the screen. The concrete syntax is shown in bold red font. '*' indicates 0 or more; [] indicates 0 or 1.
 +
 
 +
===== Event Translation =====
 +
When an event, used in the task body, is translated to an implementation its translation depends on where it is used in the task body. The mappings are relatively simple for branch, loop, and sequence; but, in addition to the parent construct, the Event translation depends on whether it is part of a synchronization. Obviously the simplest translation is when no synchronization is involved. The translator checks the composed machine to see if the event is paired in a combined event. We say that events is a Tasking machine are local, and that events in a Shared or Environ machine, are remote. If there is no synchronization, then the actions of the local event are expanded in-line in the subroutine body.
 +
 
 +
<span style="color: RED">'''NOTE''': As a result of the decomposition process, the tool can produce a remote event, without a corresponding local event. A local event, with no guards and skip action, must be added manually to the tasking machine, and composed machine in order to facilitate code generation. This relates to an implementation with a subroutine call, where there are no parameters passed, and no local updates i.e. remote updates only. The addition of the 'dummy' event will be automated in a pre-processing step in the near future. It is not necessary to have a dummy remote event if a remote event does not exist.</span>
 +
 
 +
===== Synchronization =====
 +
 
 +
Synchronization between local events (in AutoTasks) and remote events (in shared/Environ Machines) is determined using the composed machine. To use an event simply enter its name in the TaskBody editor. The translator will in-line any local actions, and add a call to perform remote updates, and obtain remote data.
 +
 
 +
Synchronization corresponds to:
 +
* a subroutine call from task to shared machine, or,
 +
* sensing or actuating of environment variables.
 +
 
 +
In the case of a subroutine call the subroutine is an atomic (with respect to an external viewer) update to state. The updates in the protected resource are implemented by a procedure call to a protected object, and tasks do not share state.  The synchronization construct also provides the means to specify parameter passing, both in and out of the task.
 +
 
 +
In the case of a sensing or actuating event, the updates of the action correspond to reads of monitored variables, and writes to controlled variables of the environment.
 +
 
 +
==== Implementing Events ====
 +
An event's role in the implementation is identified by its parent in the task body. A description follows, in general terms, of the possible implementations of an event.
 +
 
 +
<span style="color: RED">Note: An event can be to referred only '''once''' in a task body specification. Of course, shared events (in Shared machines) can be re-used, but this is done through synchronization. The task body only refers to local events</span>
 +
 
 +
* Event roles in implementation:
 +
** Branching: an event is split in the implementation; guards are mapped to branch conditions, and actions are mapped to the branch body. If the branch synchronizes with a Shared machine's event then this is mapped to a procedure call.
 +
** Looping: as in branching, the event is split; the guard maps to the loop condition, and actions to to loop body. If the event synchronizes with a Shared Machine event then it is mapped to a procedure call.
 +
** Event: if the event is not contained in a branch or loop then it is one of the following:
 +
*** A local-only event - the event only contains local updates, which are expanded to update actions in the implementation. In this case guards not permitted in the event.
 +
*** A synchronizing event - local updates are expanded to become update actions in the implementation, remote updates are performed by subroutine call. Guards in the remote event may block; in Ada this is implemented as an entry barrier, and in C can be implemented using a pthread condition variable.
 +
** Sensing annotation - This annotation is added to an event in the EMF tree. It identifies an event as one that maps to a read, from the environment. If the environment is simulated, i.e. without address variables, then the sensing event has an update action that models assignment of a return value from a subroutine call. If the event has addressed variables associated with its event parameters, then they map to direct reads from memory mapped variables in the generated code.
 +
** Actuating - This annotation is added to an event in the EMF tree. It identifies an event as one that maps to a write, to some variable in the environment. If the environment is simulated, without address variables, then the actuating event has no update action. If a sensing event has addressed variables associated with its parameters then they map to direct writes, to memory mapped variables in the generated code.
 +
 
 +
Sensing (and actuating) events make use of synchronization. The sensing/actuating synchronizations only occur between AutoTasks and Environ machines. The data exchange, in sensing and actuating events, is modelled by the event parameters, and the result from the decomposition step. Shared machine events are mapped to subroutine declarations, and their parameters are always implemented as formal parameters. Formal parameters are place-holders in a subroutine; they are replaced by the actual parameters at run-time. To assist the code generator, we automatically identify the parameter direction during translation. We identify them as either ''in'' or ''out'' parameters.
 +
 
 +
===== Addressed Variables =====
 +
When sensing monitored variables, or actuating controlled variables, in the environment we can use explicit memory addresses. We can link a task's event parameters, and an Environ machines machine variables with specific addresses, we then implement these in such a way that we can read/write from these in the generated code.
 +
 
 +
== References ==
 +
 
 +
<references/>
 +
 
 +
 
 +
[[Category:User documentation]]

Revision as of 16:17, 28 November 2011

Tasking Event-B

Tasking Event-B can be viewed as an extension of the existing Event-B language. We use the existing approaches of refinement and decomposition to structure a project that is suitable for a Tasking Development. During the modelling phase parameters are introduced to facilitate decomposition. As a result of the decomposition process, parameters become part of the interface that enables event synchronization. We make use of this interface and add information (see #Implementing Events) to facilitate code generation. The tasking extension consists of the constructs in the following table.

Construct Options
Machine Type DeclaredTask, AutoTask, SharedMachine, Environ
Control Sequence, Loop, Branch, Event, Output
Task Type Periodic(n), Triggered, Repeating, OneShot
Priority -
Event Role Actuating, Sensing
Addressed Variable Address, Base

Tasking Machines

The following constructs relate to Tasking and Environ Machines, and provide implementation details. Timing of periodic tasks is not modelled formally. Tasking and Environ Machines model Ada tasks, so they can be implemented easily in Ada; in C using the pthread library, or in Java using threads.

  • Tasking Machines may be one of the following types:
    • AutoTasks - Anonymous Tasks running from start-up.
    • Declared tasks - (Not currently used) A task template relating to an Ada tasktype declaration.

Auto Tasks are tasks that will be declared and defined in the Main procedure of the implementation. The effect of this is that the Auto Tasks are created when the program first loads, and then activated (made ready to run) before the Main procedure body runs.

  • Tasking and Environ Machines options are:
    • TaskType - Defines the scheduling, cycle and lifetime of a task. i.e. one-shot periodic or triggered. The period of a task is specified in milliseconds.
    • Priority - An integer value is supplied, the task with the highest value priority takes precedence when being scheduled. The default priority is 5.

Shared Machines

A Shared Machine models a protected resource, such as a monitor. It may be implemented in Ada as a Protected Object, in C using mutex locking, or in Java as a monitor.

  • A Shared Machine is identified using the Shared Machine annotation.

The Environ Machine

An Environ machine is a model of the environment. It can be used to generate code for use in a simulation, or be discarded in the case that a simulated environment is not required.

  • An Environ Machine is identified using the Environ Machine annotation.

Control of Program Flow

At the implementation stage we need to think about controlling the flow of execution; and where interaction with the environment is concerned, how events should be implemented. The following section describes the constructs that we have introduced to facilitate this.

Control Constructs

Each Tasking Machine has a task body which contains the flow control (algorithmic constructs).

  • We have the following constructs available in the Tasking Machine body:
    • Sequence - for imposing an order on events.
    • Branch - choice between a number of mutually exclusive events.
    • Loop - event repetition while it's guard remains true.
    • Event - a wrapper for the Event-B element (soon to be redundant).
    • Text Output - writes textual output to the screen.

The syntax for task bodies, as used in the Rose TaskBody editor, is as follows:


Syntax.png


The String will be an event name, a variable name, or a text fragment to be output to the screen. The concrete syntax is shown in bold red font. '*' indicates 0 or more; [] indicates 0 or 1.

Event Translation

When an event, used in the task body, is translated to an implementation its translation depends on where it is used in the task body. The mappings are relatively simple for branch, loop, and sequence; but, in addition to the parent construct, the Event translation depends on whether it is part of a synchronization. Obviously the simplest translation is when no synchronization is involved. The translator checks the composed machine to see if the event is paired in a combined event. We say that events is a Tasking machine are local, and that events in a Shared or Environ machine, are remote. If there is no synchronization, then the actions of the local event are expanded in-line in the subroutine body.

NOTE: As a result of the decomposition process, the tool can produce a remote event, without a corresponding local event. A local event, with no guards and skip action, must be added manually to the tasking machine, and composed machine in order to facilitate code generation. This relates to an implementation with a subroutine call, where there are no parameters passed, and no local updates i.e. remote updates only. The addition of the 'dummy' event will be automated in a pre-processing step in the near future. It is not necessary to have a dummy remote event if a remote event does not exist.

Synchronization

Synchronization between local events (in AutoTasks) and remote events (in shared/Environ Machines) is determined using the composed machine. To use an event simply enter its name in the TaskBody editor. The translator will in-line any local actions, and add a call to perform remote updates, and obtain remote data.

Synchronization corresponds to:

  • a subroutine call from task to shared machine, or,
  • sensing or actuating of environment variables.

In the case of a subroutine call the subroutine is an atomic (with respect to an external viewer) update to state. The updates in the protected resource are implemented by a procedure call to a protected object, and tasks do not share state. The synchronization construct also provides the means to specify parameter passing, both in and out of the task.

In the case of a sensing or actuating event, the updates of the action correspond to reads of monitored variables, and writes to controlled variables of the environment.

Implementing Events

An event's role in the implementation is identified by its parent in the task body. A description follows, in general terms, of the possible implementations of an event.

Note: An event can be to referred only once in a task body specification. Of course, shared events (in Shared machines) can be re-used, but this is done through synchronization. The task body only refers to local events

  • Event roles in implementation:
    • Branching: an event is split in the implementation; guards are mapped to branch conditions, and actions are mapped to the branch body. If the branch synchronizes with a Shared machine's event then this is mapped to a procedure call.
    • Looping: as in branching, the event is split; the guard maps to the loop condition, and actions to to loop body. If the event synchronizes with a Shared Machine event then it is mapped to a procedure call.
    • Event: if the event is not contained in a branch or loop then it is one of the following:
      • A local-only event - the event only contains local updates, which are expanded to update actions in the implementation. In this case guards not permitted in the event.
      • A synchronizing event - local updates are expanded to become update actions in the implementation, remote updates are performed by subroutine call. Guards in the remote event may block; in Ada this is implemented as an entry barrier, and in C can be implemented using a pthread condition variable.
    • Sensing annotation - This annotation is added to an event in the EMF tree. It identifies an event as one that maps to a read, from the environment. If the environment is simulated, i.e. without address variables, then the sensing event has an update action that models assignment of a return value from a subroutine call. If the event has addressed variables associated with its event parameters, then they map to direct reads from memory mapped variables in the generated code.
    • Actuating - This annotation is added to an event in the EMF tree. It identifies an event as one that maps to a write, to some variable in the environment. If the environment is simulated, without address variables, then the actuating event has no update action. If a sensing event has addressed variables associated with its parameters then they map to direct writes, to memory mapped variables in the generated code.

Sensing (and actuating) events make use of synchronization. The sensing/actuating synchronizations only occur between AutoTasks and Environ machines. The data exchange, in sensing and actuating events, is modelled by the event parameters, and the result from the decomposition step. Shared machine events are mapped to subroutine declarations, and their parameters are always implemented as formal parameters. Formal parameters are place-holders in a subroutine; they are replaced by the actual parameters at run-time. To assist the code generator, we automatically identify the parameter direction during translation. We identify them as either in or out parameters.

Addressed Variables

When sensing monitored variables, or actuating controlled variables, in the environment we can use explicit memory addresses. We can link a task's event parameters, and an Environ machines machine variables with specific addresses, we then implement these in such a way that we can read/write from these in the generated code.

References