Difference between pages "D45 General Platform Maintenance" and "Rodin Workshop 2012"

From Event-B
(Difference between pages)
Jump to navigationJump to search
imported>Im06r
 
imported>WikiSysop
 
Line 1: Line 1:
= Overview =
+
= Rodin User and Developer Workshop, 27-29 February 2012, Fontainebleau, France =
The Rodin platform versions concerned by this deliverable are:
 
* 2.1(08.02.2011),
 
* 2.2(01.06.2011),
 
* 2.2.2(01.08.2011),
 
* 2.3(04.10.2011),
 
* 2.4(31.01.2011),
 
* 2.5(30.04.2011).
 
This year, the maintenance carried on fixing identified bugs, although an emphasis was put on correcting usability issues. Indeed, during the annual meeting in Nice, the WP9 members agreed to refocus on the needed tasks to address some specific bugs and issues reported by DEPLOY partners, and wished resolved by the end of DEPLOY. Thus, no new features were implemented but those appearing in the description of work. The tasks to be performed by the WP9 members were then scheduled, prioritized and regularly updated during the WP9 bi-weekly meetings. The updates allowed to capture and integrate rapidly some minor changes to enhance the usability of the platform which were required by the DEPLOY partners. The following paragraphs will give an overview of the the work that has been performed concerning maintenance on the existing platform components (i.e. core platform and plug-ins).
 
  
See the Release Notes<ref name="documentation">http://wiki.event-b.org/index.php/D32_General_Platform_Maintenance#Available_Documentation</ref> and the SourceForge<ref name=documentation>http://wiki.event-b.org/index.php/D45_General_Platform_Maintenance#Available_Documentation</ref> databases (bugs and feature requests) for details about the previous and upcoming releases of the Rodin platform.
 
  
* General platform maintenance
+
Event-B is a formal method for system-level modelling and analysis. The Rodin Platform is an Eclipse-based toolset for Event-B that provides effective support for modelling and automated proof. The platform is open source and is further extendable with plug-ins. A range of plug-ins have already been developed including ones that support animation, model checking and UML-B.
The maintenance done to overcome Rodin scalability weaknesses and enhance the proving experience will be detailed in a separate chapter. However, some features initially planned and some other which were later added and prioritized are worth to mention:
+
The [http://wiki.event-b.org/index.php/Rodin_Workshop_2009 first Rodin User and Developer Workshop was held in July 2009 at the University of Southampton] while the [http://wiki.event-b.org/index.php/Rodin_Workshop_2010 second took place at the University of Düsseldorf in September 21-23, 2010]. The 2012 workshop will be part of the [http://www.bmethod.com/php/federated-event-2012-en.php DEPLOY Federated Event] hosted by the [http://lacl.univ-paris12.fr/ LACL laboratory] at [http://www.iutsf.u-pec.fr/ IUT Sénart-Fontainebleau]. Fontainebleau is within easy reach of Paris.
:*Possibility to highlight patterns in the ProverUI,
 
:*A better output providing warnings and errors in case of wrong or missing building configurations,
 
:*The switch to Eclipse 3.7,
 
:*A Handbook to complete and enhance the existing documentation.
 
  
== An overview of the contribution about Mathematical extensions / Theory Plug-in (Issam Maamria) ==
+
While much of the development and use of Rodin takes place within the [http://www.deploy-project.eu EU FP7 DEPLOY Project], there is a growing group of users and plug-in developers outside of DEPLOY. The purpose of this workshop is to bring together existing and potential users and developers of the Rodin toolset and to foster a broader community of Rodin users and developers.
Mathematical extensions have been co-developed by Systerel (for the Core Rodin Platform) and Southampton (for the Theory plug-in). The main purpose of this new feature was to provide the Rodin user with a way to extend the standard Event-B mathematical language by supporting user-defined operators, basic predicates and algebraic types. Along with these additional notations, the user can also define new proof rules (prover extensions).
 
A theory is a file that can be used to define new algebraic types, new operators/predicates and new proof rules. Theories are developed in the Rodin workspace, and proof obligations are generated to validate prover and mathematical extensions. When a theory is completed and (optionally) validated, the user can make it available for use in models (this action is called the deployment of a theory). Theories are deployed to the current workspace (i.e., Workspace Scope), and the user can use any defined extensions in any project within the workspace.
 
  
* {{TODO}} An overview of the contribution about Plug-in Incompatibilities (All partners)
+
For Rodin users the workshop will provide an opportunity to share tool experiences and to gain an understanding of on-going tool developments. For plug-in developers the workshop will provide an opportunity to showcase their tools and to achieve better coordination of tool development effort.
  
* {{TODO}} An overview of the contribution about Modularisation (Alexei Illiasov)
+
The format will be presentations together with plenty of time for discussion. On Day 1 a Developer Tutorial will be held while Days 2 and 3 will be devoted to tool usage and tool developments.  The workshop will be followed by an open  [http://www.bmethod.com/php/federated-event-2012-en.php Industry Day].
  
* {{TODO}} An overview of the contribution about Decomposition (Renato Silva)
+
If you are interested in giving a presentation at the Rodin workshop, send a short abstract (1 or 2 pages in PDF) to rodin@ecs.soton.ac.uk by 16 January 2012. Indicate whether it is a tool usage or tool development presentation. Plug-in presentations may be about existing developments or planned future developments.  We will endeavour to accommodate all submissions that are relevant to Rodin and Event-B.
  
* {{TODO}} An overview of the contribution about Team-based Development (Colin Snook, Vitaly Savicks)
+
Attendance at the DEPLOY Federated Event (including the Rodin Workshop) is open to all.
  
* {{TODO}} An overview of the contribution about UML-B (Colin Snook, Vitaly Savicks)
 
  
== An overview of the contribution about ProR (Michael Jastram) ==
+
----
  
ProR is a replacement of the original requirements plug-in, which got discontinued in 2010.  It is based on the OMG ReqIF standard (<ref name="reqif">http://www.omg.org/spec/ReqIF/</ref>), which provides interoperability with industry tools.  It evolved into the Eclipse Foundation project "Requirements Modeling Framework" (RMF, <ref name="rmf">http://eclipse.org/rmf</ref>), resulting in significant visibility.  ProR is independent from Rodin.  Integration is achieved with a separate plug-in that provides support for traceability and model integration.
+
'''Organisers'''
  
== An overview of the contribution about BMotion Studio (Lukas Ladenberger) ==
+
Michael Butler, University of Southampton
  
BMotion Studio is a visual editor which enables the developer of a formal model to set-up easily a domain specific visualisation for discussing it with the domain expert. BMotion Studio comes with a graphical editor that allows to create a visualisation within the modeling environment. Also, it does not require to use a different notation for gluing the state and its visualisation. BMotion Studio is based on the ProB animator and is integrated into the RODIN tool. However, BMotion Studio is independent from Rodin. Integration is achieved with a separate plug-in.
+
Stefan Hallerstede, University of Aarhus
  
The main advantages of BMotion Studio are:
+
Thierry Lecomte, ClearSy
  
* The modeler stays within a single notation. BMotion Studio uses Event-B predicates and expressions as gluing code.
+
Michael Leuschel, University of Düsseldorf
* An easy to use graphical editor, that allows to create visualisations with a few mouse clicks.
 
* BMotion Studio comes with a number of default observers and controls that are sufficient for most visualisations.
 
* It can be extended for specific domains.
 
  
= Motivations =
+
Alexander Romanovsky, University of Newcastle
The tasks to solve the issues faced by the DEPLOY partners have been listed and have been assigned to groups according to their priority. A high priority means a high need in the outcome of a given task. The group 1 has the highest priority, the group 2 has an intermediate priority, and the group 3 has the lowest priority. The group 4 concerns topics that could not be resourced during the lifetime of DEPLOY.The prover integrity item, although not being directly covered, has been partially addressed thanks to Isabelle and SMT integration. Unfortunately, the originally planned export of full proofs and integrity check was too ambitious to be fully achieved in the scope of DEPLOY.
 
  
{{SimpleHeader}}
+
Laurent Voisin, Systerel
|-
 
! scope=col | Group 1 (highest priority) || Responsible
 
|-
 
|Performance <br /> - Core (large models, etc.) <br /> - GUI (incl. prover UI, edition, etc.) || SYSTEREL
 
|-
 
|Prover Performances <br /> - New rewriting rules / inference rules <br /> - Automatic tactics (preferences, timeout, etc.) || SYSTEREL
 
|-
 
|ProB Disprover (incl. counter examples to DLF POs) || Düsseldorf
 
|-
 
|Stability (crash, corruption, etc.)  || SYSTEREL
 
|-
 
|Editors || SYSTEREL/Düsseldorf
 
|-
 
|}
 
{{SimpleHeader}}
 
|-
 
! scope=col | Group 2 || Responsible
 
|-
 
| Prover Performances <br /> - SMT provers integration <br /> - connection with Isabelle  <br /> - Mathematical extensions <br /> - ProB || <br />SYSTEREL <br /> ETH Zürich <br /> Southampton/SYSTEREL <br /> Düsseldorf
 
|-
 
|Scalability <br /> - Decomposition <br /> - Modularisation plug-in <br /> - Team-based development || <br /> Southampton <br /> Newcastle <br /> Southampton
 
|-
 
|Plug-in incompatibilities || Newcastle
 
|-
 
|Model-based testing || Pitesti/Düsseldorf
 
|-
 
|ProR || Düsseldorf
 
|}
 
{{SimpleHeader}}
 
|-
 
! scope=col | Group 3 || Responsible
 
|-
 
|Scalability <br /> - Generic instantiation <br /> - UML-B maintenance <br /> || <br /> Southampton <br /> ETH Zürich/Southampton
 
|-
 
|Code Generation || Southampton
 
|}
 
{{SimpleHeader}}
 
|-
 
! scope=col | Group 4
 
|-
 
|Prover Integrity
 
|-
 
|Integrity of Code Generation
 
|}
 
== Platform maintenance ==
 
The platform maintenance, as it can be deduced from the above tables in section [[#Motivations | Motivations]], mainly concerned stability and performance improvement. These topics will be discussed and detailed in a separate chapter about scalability improvements.<br>
 
However, other improvements of utmost importance were made on the platform. These improvements either came from DEPLOY partners specific needs, or were corresponding to previously identified needs (listed in D32 - Model Construction tools & Analysis III Deliverable).
 
Hence we review below the motivations of some noteworthy implemented features:
 
* A Possibility to highlight patterns in the Prover UI.
 
This feature came from a request of DEPLOY partners<ref name="searchInPUI">https://sourceforge.net/tracker/?func=detail&atid=651672&aid=3092835&group_id=108850</ref>, often facing the need to find particular patterns such as expressions in long predicates (e.g. long goals). Since Rodin 2.2, and its new Proving UI interface, a nice feature was added, allowing to search and highlight a string pattern into the whole Proving UI views and editors. This function as also been enabled on direct selection of text in this UI.
 
* A better output providing warnings and errors in case of wrong or missing building configurations.
 
This issue, often seen as a bug or as a plug-in incompatibility, was raised when a user imports and tries to use a model on a platform with some missing required plug-ins. The user often thought his models corrupted whereas Rodin was not able to build them, and hid this information to the user. This is why, since Rodin 2.3, an output has been provided in such case, taking the form of warnings or errors that any user can understand and review. This is a first answer to Rodin plug-in incompatibilities issues.
 
* The switch to Eclipse 3.7.
 
Due to the major improvements made every year in Eclipse releases and the continuously growing number of contributing projects which are for some of them used as basis for Rodin plug-ins, the Rodin platform follows the evolution and is adapted every year quickly to the latest Eclipse version available. This year, Rodin 2.3 originated the switch from Eclipse 3.6 to Eclipse 3.7.
 
* A Handbook to complete and enhance the existing documentation.
 
At the DEPLOY Plenary Meeting in Zürich in 2010, it has been stated that the current documentation, in its state at that time, would not support a engineer starting using the tools without significant help of an expert <ref name="documentationoverhaul>http://wiki.event-b.org/index.php/User_Documentation_Overhaul</ref>. Significant efforts to improve the documentation were performed and coordinated by Düsseldorf, and took form of a handbook<ref name="RodinHandbook">http://handbook.event-b.org/</ref>. The Rodin handbook has the aim to minimize the access to an expert, by providing the necessary assistance to an engineer in the need to be productive using Event-B and the Rodin toolset. The contents of the handbook, user oriented, were originated by some contents of the Event-B wiki.
 
 
 
== Mathematical extensions / Theory Plug-in (Issam Maamria) ==
 
The Theory plug-in enables the definition of mathematical and prover extensions. It provides a high-level interface to the Rodin Core capabilities with regards to mathematical extensions. The Rule-based Prover was originally devised to provide an usable mechanism for user-defined rewrite rules through theories. Theories were, then, deemed a natural choice for defining mathematical extensions as well as proof rules to reason about such extensions. In essence, the Theory plug-in provides a systematic platform for defining and validating extensions through a familiar technique: proof obligations.
 
 
 
== Plug-in Incompatibilities ==
 
By its extensibility nature, the Rodin platform is susceptible to incompatibilities. Indeed, there are many ways in which incompatibilities could occur, and some occurred in the lifetime of DEPLOY. A good example, is the dependency management. Suppose that a bundle x_v1.0 is needed by a plug-in A (i.e. a dependency from A has been defined to x in at most the version 1.0) and installed in Rodin. Then the plug-in x_v1.1 is needed by a plug-in B. The both versions 1.0 and 1.1 of x could not be installed and used at the same time and create thus some usage incompatibility.
 
 
 
== Modularisation ==
 
{{TODO}} ''To be completed by Alexei Illiasov''
 
== Decomposition ==
 
{{TODO}} ''To be completed by Renato Silva'' 
 
== Team-based Development ==
 
{{TODO}} ''To be completed by Colin Snook, Vitaly Savicks''
 
== UML-B ==
 
{{TODO}} ''To be completed by Colin Snook, Vitaly Savicks''
 
== ProR ==
 
 
 
While the original requirements plug-in for Rodin was useful as a prototype, a number of shortcomings lead to a new development.  In particular, the original plug-in was a traceability tool with externally managed requirements.  With ProR, requirements are authored and edited within Eclipse.  The original plug-in supported only a limited number of attributes and flat (unstructured) requirements.  ProR supports all data structures that the ReqIF standard<ref name="reqif">http://www.omg.org/spec/ReqIF/</ref> supports. Further, ReqIF-support for industry tools like Rational DOORS, MKS or IRqA is expected in the near future, while the original plug-in required a custom adaptor for each data format.
 
 
 
ProR is developed independently from Rodin.  Dependencies to Rodin exist only in the Rodin integration plug-in.  This significantly decreases the maintenance effort for the integration plugin, while increasing the visibility of ProR in the Open Source community.  The move of ProR from the University of Düsseldorf to the Eclipse Foundation increases visibility even further.  The Rodin integration plug-in is maintained as an independent project at github.
 
 
 
== BMotion Studio ==
 
The communication between a developer and a domain expert (or manager) is very important for successful deployment of formal methods. On the one hand it is crucial for the developer to get feedback from the domain expert for further development. On the other hand the domain expert needs to check whether his expectations are met. An animation tool allows to check the presence of desired functionality and to inspect the behaviour of a specification, but requires knowledge about the mathematical notation. To avoid this problem, it is useful to create domain specific visualisations. However, creating the code that defines
 
the mapping between a state and its graphical representation is a rather time consuming task. It can take several weeks to develop a custom visualisation.
 
 
 
BMotion Studio is a visual editor which enables the developer of a formal model to set-up easily a domain specific visualisation for discussing it with the domain expert. BMotion Studio comes with a graphical editor that allows to create a visualisation within the modeling environment. Also, it does not require to use a different notation for gluing the state and its visualisation.
 
 
 
= Choices / Decisions =
 
== Platform maintenance ==
 
* Revisited task priority
 
This year, the process of giving priority to maintenance tasks was revisited according the the refocus mentioned above. The aim was to address all the major scalability issues before the end of DEPLOY. Thus, the requests coming from DEPLOY partners were given high priorities, and they were also prioritized against the already planned tasks coming from both DEPLOY partners and the Description of Work.
 
* Keep 32-bit versions of the Rodin platform on linux and windows systems
 
It was asked by end users to make both 32-bit and 64-bit versions of the Rodin platform available for Linux and Windows platforms. Only a 64-bit version of Rodin is available on Mac platforms as 32-bit Mac (early 2006) platforms are no longer maintained. The request to offer 64-bit was motivated by the possibility to increase for them the available Java heap size for some memory greedy platforms (these before 2.3). However, the drawbacks of assembling and maintaining more platforms (5 platforms instead of 3) and the corrections brought to the database which improved the memory consumption pushed away the limitations of the platform, made this request not relevant for now.
 
 
 
== Mathematical extensions / Theory Plug-in (Issam Maamria)==
 
The Theory plug-in contributes a theory construct to the Rodin database. Theories were used in the Rule-based Prover (before it was discontinued) as a placeholder for rewrite rules. Given the usability advantages of the theory component, it was decided to use it to define mathematical extensions (new operators and new datatypes). Another advantage of using the theory construct is the possibility of using proof obligations to ensure that the soundness of the formalism is not compromised. Proof obligations are generated to validate any properties of new operators (e.g., associativity). With regards to prover extensions, it was decided that the Theory plug-in inherits the capabilities to define and validate rewrite rules from the Rule-based Prover. Furthermore, support for a simple yet powerful subset of inference rules is added, and polymorphic theorems can be defined within the same setting. Proof obligations are, again, used as a filter against potentially unsound proof rules.
 
 
 
== Plug-in Incompatibilities ==
 
It has been decided in cooperation with all the WP9 partners to find better ways to address the plug-in incompatibility issues. First of all, the various partners refined the concept of "plug-in incompatibility". Hence, various aspects could be identified and some specific answers were given to each of them. The user could then defined more clearly the incompatibility faced. Plug-in incompatibilities can be separated in two categories:
 
:* Rodin platform/plug-in incompatibilities, due to some wrong match between Rodin included packages and the plug-in dependencies (i.e. needed packages). These incompatibilities, when reported, allowed the plug-in developers to contact SYSTEREL in charge of managing the packages shipped with a given version of Rodin. It could also allow traceability of incompatibilities and information to the user through a specific and actualized table on each Rodin release notes page on the Wiki<ref name="incompTableA">http://wiki.event-b.org/index.php/Rodin_Platform_Releases#Current_plug-ins</ref>.
 
:* Plug-in/plug-in incompatibilities, due to some wrong match between needed/installed packages, or API/resources incompatible usage. A table was created on each release notes wiki page, and a procedure was defined<ref name="incompTableB">http://wiki.event-b.org/index.php/Rodin_Platform_Releases#Known_plug-in_incompatibilities</ref> so that identified incompatibilities are listed and corrected by the concerned developers.
 
It appeared that cases of using a model which references some missing plug-ins were formerly often seen as compatibility issues although they were not.<br>
 
After the incompatibilities have been identified, the developing counterparts being concerned assigned special tasks and coordination to solve issues the soonest as possible. Incompatibilities are often due to little glitches or desynchronisation and such direct coordination of counterpart appeared appropriate because quick and effective.
 
 
 
== Modularisation ==
 
{{TODO}} ''To be completed by Alexei Illiasov''
 
== Decomposition ==
 
{{TODO}} ''To be completed by Renato Silva'' 
 
== Team-based Development ==
 
{{TODO}} ''To be completed by Colin Snook, Vitaly Savicks''
 
== UML-B ==
 
{{TODO}} ''To be completed by Colin Snook, Vitaly Savicks''
 
== ProR ==
 
 
 
The following key decisions were made when developing ProR:
 
 
 
* '''New development, rather than continuing the original plug-in''' - the architecture of ProR differs significantly from that of the original plug-in (see [[D45_General_Platform_Maintenance#ProR]].  In addition, new technologies like EMF promised a cleaner, more powerful framework for an implementation.
 
 
 
* '''ReqIF as the underlying data model''' - the ReqIF standard <ref name="reqif">http://www.omg.org/spec/ReqIF/</ref> is gaining traction and promises interoperability with industry tools.  In addition, a digital version of the data model was available for free and could serve as the foundation for the model code.
 
 
 
* '''The Eclipse Modeling Framework''' (EMF) was identified as a technology that would allow a quick and clean foundation for an implementation.  Further, the Rodin EMF-plug-in represents a convenient interface for integrating ProR and ProB.  Last, the digital data model from the OMG could be imported directly into EMF and used for generating the model code.
 
 
 
* '''Keeping ProR independent from Rodin''' - There is significant interest in ReqIF right now, but this interest is unrelated to formal methods.  By providing an implementation that is independent from Rodin, we have a much larger target group of potential users and developers.  By carefully designing extension points, we can still provide a powerful Rodin integration.
 
 
 
* '''Eclipse Foundation Project''' - we were actively establishing an open source community around ProR.  By recruiting engaged partners early on, development progressed faster than anticipated.  By becoming an Eclipse Foundation project <ref name="rmf">http://eclipse.org/rmf</ref>, we exceeded our goals in this respect.
 
 
 
== BMotion Studio ==
 
The following key decisions were made when developing BMotion Studio:
 
 
 
* '''Keeping BMotion Studio user-friendly''' - The user should be able to create a visualization not requiring additional skills in programming languages.
 
* '''ProB as animator for providing state information''' - With the ProB animator, we have a powerful tool for interacting with the model.
 
* '''Provide extensibility for specific domains''' - By carefully designing extension points, we can provide a powerful integration for specific domains.
 
* '''Keeping BMotion Studio independent from Rodin''' - By providing an implementation that is independent from Rodin, we have a much larger target group of potential users and developers.
 
 
 
= Available Documentation =
 
* Core platform:
 
:The following pages give useful information about the Rodin platform releases:
 
:* Release notes<ref>http://wiki.event-b.org/index.php/Rodin_Platform_Releases</ref>.
 
:* Bugs<ref>https://sourceforge.net/tracker/?group_id=108850&atid=651669</ref>.
 
:* Feature requests<ref>https://sourceforge.net/tracker/?group_id=108850&atid=651672</ref>.
 
*The Rodin handbook is proposed as a PDF version and a HTML version and a dedicated plug-in makes it available as help within Rodin<ref name="RodinHandbook">http://handbook.event-b.org/</ref>.
 
 
 
*{{TODO}}  Links for Mathematical extensions / Theory Plug-in
 
*{{TODO}}  Links for Modularisation
 
*{{TODO}}  Links for Decomposition
 
*{{TODO}}  Links for Team-based Development
 
*{{TODO}}  Links for UML-B
 
* Links for ProR
 
** ProR at the Eclipse Foundation <ref name="rmf">http://eclipse.org/rmf</ref>
 
** ProR Documentation for end users and plugin developers <ref>http://pror.org</ref>
 
* Links for BMotion Studio
 
** BMotion Studio Documentation for end users and plugin developers <ref>http://www.stups.uni-duesseldorf.de/BMotionStudio</ref>
 
** Context sensitive help is in work.
 
 
 
= Status =
 
== Platform maintenance ==
 
By the end of the project, there are :
 
* xx bugs reported and open. All with a priority lower or equal to 5.
 
* xx feature requests expressed and still open.
 
 
 
== Mathematical extensions / Theory Plug-in (Issam Maamria) ==
 
Work on the Theory plug-in includes:
 
* Bug fixes.
 
* Usability improvements.
 
* Exploring other potential way of defining operators and types (e.g., axiomatic definitions).
 
 
 
== Plug-in Incompatibilities ==
 
As the time of writing this deliverable, no plug-in incompatibilities are left or known to exist between the platform and plug-ins or between plug-ins.
 
 
 
== Modularisation ==
 
{{TODO}} ''To be completed by Alexei Illiasov''
 
== Decomposition ==
 
{{TODO}} ''To be completed by Renato Silva'' 
 
== Team-based Development ==
 
{{TODO}} ''To be completed by Colin Snook, Vitaly Savicks''
 
== UML-B ==
 
{{TODO}} ''To be completed by Colin Snook, Vitaly Savicks''
 
== ProR ==
 
 
 
ProR took on a life on its own as part of the Requirements Modeling Framework<ref name="rmf">http://eclipse.org/rmf</ref>.  It is currently in the incubation stage of an Eclipse project.  There are currently five committers in total, with two from the Rodin project, namely Michael Jastram (Project Lead) and Lukas Ladenberger.
 
 
 
The Rodin integration supports:
 
 
 
* Creating traces between model elements and requirements
 
* Highlighting of model elements in the requirements text
 
* Marking of invalidated traces, where either the requirement or model element had changed.
 
 
 
The Rodin integration is hosted at GitHub.
 
 
 
== BMotion Studio ==
 
The tool is available as a part of the ProB animator and is ready for use for visualizing Event-B models within the Rodin tool. Of course, we are working on new features.
 
 
 
= References =
 
<references/>
 
 
 
[[Category:D45 Deliverable]]
 

Revision as of 13:33, 9 September 2011

Rodin User and Developer Workshop, 27-29 February 2012, Fontainebleau, France

Event-B is a formal method for system-level modelling and analysis. The Rodin Platform is an Eclipse-based toolset for Event-B that provides effective support for modelling and automated proof. The platform is open source and is further extendable with plug-ins. A range of plug-ins have already been developed including ones that support animation, model checking and UML-B. The first Rodin User and Developer Workshop was held in July 2009 at the University of Southampton while the second took place at the University of Düsseldorf in September 21-23, 2010. The 2012 workshop will be part of the DEPLOY Federated Event hosted by the LACL laboratory at IUT Sénart-Fontainebleau. Fontainebleau is within easy reach of Paris.

While much of the development and use of Rodin takes place within the EU FP7 DEPLOY Project, there is a growing group of users and plug-in developers outside of DEPLOY. The purpose of this workshop is to bring together existing and potential users and developers of the Rodin toolset and to foster a broader community of Rodin users and developers.

For Rodin users the workshop will provide an opportunity to share tool experiences and to gain an understanding of on-going tool developments. For plug-in developers the workshop will provide an opportunity to showcase their tools and to achieve better coordination of tool development effort.

The format will be presentations together with plenty of time for discussion. On Day 1 a Developer Tutorial will be held while Days 2 and 3 will be devoted to tool usage and tool developments. The workshop will be followed by an open Industry Day.

If you are interested in giving a presentation at the Rodin workshop, send a short abstract (1 or 2 pages in PDF) to rodin@ecs.soton.ac.uk by 16 January 2012. Indicate whether it is a tool usage or tool development presentation. Plug-in presentations may be about existing developments or planned future developments. We will endeavour to accommodate all submissions that are relevant to Rodin and Event-B.

Attendance at the DEPLOY Federated Event (including the Rodin Workshop) is open to all.



Organisers

Michael Butler, University of Southampton

Stefan Hallerstede, University of Aarhus

Thierry Lecomte, ClearSy

Michael Leuschel, University of Düsseldorf

Alexander Romanovsky, University of Newcastle

Laurent Voisin, Systerel