
Developing the UML-B modelling tools

Colin Snook[0000−0002−0210−0983], Michael Butler[0000−0003−4642−5373], Thai Son
Hoang[0000−0003−4095−0732], Asieh Salehi Fathabadi[0000−0002−0508−3066], and

Dana Dghaym[0000−0002−2196−2749]

ECS, University of Southampton, Southampton, U.K.
{cfs, m.j.butler, t.s.hoang, A.Salehi-Fathabadi, D.Dghaym }@soton.ac.uk

Abstract. UML-B is a UML-like diagrammatic front end for the Event-
B formal modelling language. We have been developing UML-B for over
20 years and it has gone through several iterations, each with significant
changes of approach. The first version was an adaptation of a UML tool,
the second generated a complete Event-B project, the third contributed
parts of an Event-B model, and the fourth (currently under development)
provides a human usable text persistence. Here we outline the reasons
for these different developments and summarise the lessons learnt.

1 Introduction and Motivation

Towards the end of the last century it was widely recognised that formal mod-
elling is beneficial in reducing specification errors, but despite various arguments
regarding the cost benefits of early error detection, it was difficult to dispel the
view that they were costly to achieve and required ‘special’ engineers or math-
ematicians. We investigated these beliefs through empirical experiments and
interviews with industry experts. The experiments [23] established that formal
specifications are no more difficult to understand than computer programs of
equivalent complexity. However, when interviewed, industry exponents of formal
methods warned that it is the choice of useful abstractions that is difficult and
requires experience [22]. Abstraction is something of an art and often counter to
the nature of engineers used to looking for solutions. Finding abstractions that
are amenable to verification tools adds another complication which can only be
mitigated by experience and expertise.

We postulated that a visual modelling tool would aid engineers in exploring
and choosing different abstractions. This theory was grounded in ‘The Cognitive
Dimensions of Notations Framework’ [5] which provides a ”common vocabulary
for discussing many factors in notation, UI or programming language design”.
(In the following, the terms from the framework are shown in italics). Using this
framework, we postulated that, for systems modelling, we need abstractions for a
close mapping to the problem domain, but this requires premature commitment
(early decisions) which makes specification more difficult especially when com-
pounded by viscosity (the effort needed to change the specification) which can be
high in a large textual specification with many inter-dependencies. The UML-B



2 C.F. Snook et al.

diagrams help by increasing the visibility of chosen abstractions through visual-
isation and reducing viscosity. The reason the diagrams are efficient is because
a single diagram entity represents many lines of formal specification text com-
pared to a textual specification. A translation tool then converts the diagram
into a textual form for formal verification and validation. This iterative pro-
gressive evaluation alleviates the difficulty of making premature commitments.
A more detailed usability assessment of UML-B using cognitive dimensions is
discussed in [17].

The B-method [1] is a method of software development using the formal mod-
elling language, B which is based on set theory and first order predicate logic.
It supports the concept of abstraction and incremental refinement with verifica-
tion by proof. Event-B [2] is a formal modelling language for modelling discrete
systems. Event-B was developed from the B-method and hence also supports
abstraction and incremental refinement with verification by proof. We chose to
use B, and later Event-B, as our underlying formal specification language be-
cause they provide a notion of formal refinement with strong tool support for
verification using theorem provers as well as model checking and animation tools.

We chose to use the UML (Unified Modelling Language) [18] as the ba-
sis for our diagrammatic modelling because it was already fairly widespread
and therefore familiar within industry. Event-B models are based on set theory
which involves collections of instances and their relationships. This has a nat-
ural visualisation as an entity-relationship diagram which can be represented
using UML class diagrams. Behaviour in Event-B is modelled as events that fire
spontaneously when their guards are true and alter the variables using actions
that are treated as a set of simultaneous parallel substitutions. Here there are
some important differences between Event-B events and UML state-chart tran-
sitions. However, a state-machine representation, similar in structure to UML
statecharts, is useful for representing the behaviour of Event-B models. Hence
we developed the UML-B diagrammatic modelling tools [19,20] and have been
supporting and developing them for over 20 years during which time we have
enjoyed many collaborations with various industry sectors. Our current research
work, industrial case studies and tool installations are shown on our UML-B
website [12].

2 History of UML-B

Driven by experience gained through industrial collaboration, UML-B has been
developed over the last 22 years, going through several distinct and fundamen-
tally different versions. This section gives a history of the development of UML-B
and the motivation for changing to a new approach in each case.

2.1 Version 1 - Extending standard UML

The initial concept of UML-B (in 2000) was to translate from UML into the B
formal notation. (This was before Event-B and Rodin existed). Hence the first



Developing the UML-B modelling tools 3

version of UML-B [20] was based on the IBM Rational Rose UML tool. Ratio-
nal Rose provided a visual basic scripting facility for the user to add tooling
features to enhance the diagrams. UML-B was implemented as a script that
traversed the UML diagrams and output a B model as a text file. The UML-B
model was constructed as a standard UML class diagram but with some restric-
tions and additional properties added as UML stereotypes. Invariants, could be
added to classes and guards and actions could be added to class methods, in
order to fully specify the behaviour of the model. The notation used for these
textual annotations was derived from the target notation, B, but with support
for automatic quantification over instances of a class or parameterisation of the
contextual class instance (‘self’). Here we may have been able to use OCL for
the constraint language and possibly, in a declarative style, for actions. However,
this would have entailed more work to invent a translation and caused more sep-
aration between the specification and the verification languages. For this reason
we took the easier route of basing our constrain/action language on Event-B
rather than OCL.

The generated B file was then imported into the B-Core tool [4] for formal
analysis. Unfortunately, the Rational Rose tool was a Windows-based applica-
tion, whereas the B-Core tool was only available for Linux operating systems.
Therefore the user had to switch to a different operating system in order to
analyse the formal model.

2.2 Version 2 - UML-B: Like UML but different

In 2004 the Rodin project [3,15] was started with the aim of developing a new
extensible formal modelling platform to support the new Event-B notation for
systems modelling. It includes Event-B editors, static checking tools and mathe-
matical theorem provers for verification of the models. This gave an opportunity
to greatly improve UML-B and a new version was developed with a different
concept from the first version.

– We no longer tried to bend UML to our purpose but instead, developed our
own diagrammatic modelling notation borrowing ideas from UML only when
they fitted.

– We had an integrated extensible modelling platform based on Eclipse [8,7]
which greatly improved the workflow from source model to verification re-
sults.

– The Event-B notation was aimed at systems level modelling and so UML-B
followed suit. The concept of UML-B was always more aligned to systems
level rather than software development, hence Event-B was a better fit for
our purposes.

This version of UML-B [19] generated an entire Event-B project from a UML-
B project. Hence all modelling had to be done in UML-B since anything the user
did to the Event-B model would be overwritten the next time the UML-B was
translated. More and more features were added to UML-B in order to support



4 C.F. Snook et al.

different modelling use cases. The action and constraint notation for invariants,
guards and actions was continued in this version and developed further by adding
new features. Class diagrams and state-machines were supported, but both de-
viated from their UML counterparts in order to provide a better correspondence
with the target formalism. It should be noted that through our industrial col-
laborations we were gradually appreciating the significance of the very different
semantics between UML statecharts and UML-B state-machines. An example
of this was that users tended to attach the same event to two transitions of the
same state-machine expecting one of them to fire depending on which state was
active. However, in UML-B this creates two transitions that must fire together
and hence never do so (since both sources can never be active at the same time).
Therefore we referred to UML-B as being ‘UML-like’ from this point on and
took care to prepare users for the differences.

The UML-B modelling language used the Eclipse Modelling Framework [24]
(EMF) where a meta-model is constructed to define the abstract syntax of a
modelling language and the EMF tools then generate Java code that can load
model instances of that language and serialise (persist) them. The default format
for model serialisation is XMI (an XML based notation for model interchange),
but this can be overridden with any user-defined serialisation format. For this
version of UML-B, the default XMI format was used for serialisation. EMF is a
very useful basis for defining modelling notations and we have continued to use
it for all our future version of UML-B as well as any other model tooling that
we have developed. We used the Graphical Modelling Framework (GMF) [14] to
develop the concrete diagram syntax, editors and tooling.

Although this version of UML-B was quite popular with industrial users
that were relatively new to formal modelling, a significant portion of users were
already familiar with Event-B and would prefer to have the full flexibility of
working in Event-B and using the diagram notations more selectively.

2.3 Version 3 - iUML-B: Extending Event-B

In 2008, The ‘Deploy’ project [13] was started as a follow on from the Rodin
project with the aim of promoting the use of the Rodin platform, and its associ-
ated plug-ins such as UML-B, in industry. During this project a new version of
UML-B was developed that could work alongside Event-B, rather than overwrite
the Event-B models all the time.

Since the new iUML-B needed to be an extension of Event-B rather than a
separate language, a new EMF meta-model was needed. An Event-B text editor
(Camille) was also developed by Heinrich Heine University in Dusseldorf and
since both needed an EMF meta-model for Event-B, researchers at Dusseldorf
and Southampton, as well as University of Newcastle, worked together to produce
a common EMF based framework and meta-model for Event-B [21] which could
be used as the basis for future tools. The iUML-B meta-model then extends
the Event-B meta-model to support class diagrams and state-machines using
a generic extension mechanism built into the meta-model. The iUML-B model



Developing the UML-B modelling tools 5

was serialised (i.e. saved/persisted) within a single extension element within the
Rodin Event-B model.

In this version of UML-B, the diagrams still generate Event-B elements but
not the complete Event-B model. Some parts of the Event-B model are expected
to already exist and the diagrams elaborate them by providing further details.
For example a UML-B class no longer generates the data item (set, constant or
variable) that models the set of instances, but it can generate invariants that
constrain the set of instances. Similarly, attributes and associations, ‘elaborate’
existing data elements by generating invariants about their type (being a rela-
tion between the containing class instances and the attribute/association type).
Class methods and state-machine transitions ‘elaborate’ events that already ex-
ist in the Event-B and contribute extra parameters, guards and actions. This
strategy of elaboration allows the modeller to retain control over the Event-B
model and choose which parts to model in Event-B and which parts to model
diagrammatically in UML-B. (For expediency, the UML-B diagram editor pro-
vides an option to create the elaborated elements if they do not already exist in
the Event-B).

However, a disadvantage of diagrammatic models is that it becomes more
difficult to get a quick overview of all the details in the model. In a textual
syntax all of the details of the model are visible in the same view, even if they
are complicated to interpret, whereas in a diagram, it is cumbersome to show
everything on the canvas. Hence in UML-B certain model details are given in
the associated contextual properties view which only becomes visible when the
appropriate model element is selected. This led to some users asking for a human
readable text persistence for UML-B. Other advantages of a human readable text
persistence are that it may be easier to compare different versions of models
(provided order is maintained) and to copy and paste sections of models. (Note
that the default persistence is XMI (a variant of XML) which is ASCII text, but
designed for machine loading and therefore difficult to read).

2.4 Version 4 - xUML-B: A human usable text persistence

The Camille text editor for Event-B was very popular but still serialised models
using the Rodin XML-based format. Another problem with Camille was that it
is very difficult to extend a concrete syntax. Hence extensions to the Event-B
modelling language (e.g. UML-B) were difficult to accommodate. To obtain an
extensible and true human usable text serialisation for Event-B we developed a
new ’front-end’ for Event-B using XText [6,16] which we call ‘CamilleX’ [9]. Due
to the difficulty of extending Rodin models, CamilleX models are written in a
separate human readable text file. Hence the source models are separate from
the Rodin models which are automatically re-generated for verification purposes
when the CamilleX model is saved. Regeneration is efficient since the translations
are very fast and the Rodin verification builders are designed to find and re-
use existing proofs wherever possible. Further discussion on the development of
CamilleX is given in [10]



6 C.F. Snook et al.

However, this meant that the UML-B models can no longer be persisted
inside the Rodin models. Hence we are now developing an alternative persistence
scheme for iUML-B so that its models are stored separately from the elaborated
Rodin models. The new UML-B persistence is also based on XText so that we
have a human readable persistence for UML-B. We call this version xUML-B.

3 Conclusions

The main lessons we have learnt from our experiences of developing UML-B are.

– Heavily featured semi-formal modelling languages such as UML are difficult
to use for precise formally verifiable specification. While UML covers a wide
range of users needs it doesn’t support the precise mathematical semantics
needed for proof. UML can be specialised through profiles and stereotypes,
but users are confused if familiar features are not used or represent different
semantics. Therefore, it is better not to try to translate UML but to invent
a new notation that is better suited to the target formalism.

– A downside of making a new notation similar to a well-known existing one
such as UML, is that users may be confused when the model does not behave
as they are used to. An example of this is the difference between UML-B
state-machines and UML statechart ‘run to completion’ semantics.

– Model edition, checking and verification needs to be highly integrated so
that changes can be quickly assessed.

– While there are many users that are attracted to a self contained diagram-
matic notation, experienced users want the flexibility to choose between
diagrammatic and textual representations for different parts of a model.

– Even when diagrams are used, users express a strong desire for a human
usable textual persistence which helps with maintenance activities such as
version comparison and copy and paste as well as enabling a quick oversight
of the content

A common reaction to UML-B is to question the decision not to translate
standard UML. There is of course a desire not to proliferate new languages un-
necessarily. As we have already discussed, the UML semantics is not easily used
for representing Event-B semantics. For example, we have extensively researched
ways to reconcile run to completion semantics (used in UML statecharts) with
Event-B style refinement [11]. An alternative approach would be to develop a
new formalised theory of refinement for UML and provide new theorem provers
to support it. However, we believe this would be extremely difficult simply be-
cause great care was taken to achieve tractable refinement and proof in Event-B
by keeping to a simple and appropriate semantics.

Acknowledgements

This work is supported by the HiClass project (113213), which is part of the
ATI Programme, a joint Government and industry investment to maintain and
grow the UK’s competitive position in civil aerospace design and manufacture.



Developing the UML-B modelling tools 7

References

1. J-R. Abrial. The B Book - Assigning programs to meanings. Cambridge University
Press, 1996.

2. J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

3. J-R Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, and L. Voisin. Rodin:
An open toolset for modelling and reasoning in Event-B. Software Tools for Tech-
nology Transfer, 12(6):447–466, 2010.

4. B-Core(UK). B-Toolkit User’s Manual, Release 3.2. Oxford, UK, 1996.

5. A. Blackwell and T. Green. Chapter 5 - notational systems—the cognitive di-
mensions of notations framework. In J.M. Carroll, editor, HCI Models, Theories,
and Frameworks, Interactive Technologies, pages 103–133. Morgan Kaufmann, San
Francisco, 2003.

6. M. Eysholdt and H. Behrens. Xtext: Implement Your Language Faster Than the
Quick and Dirty Way. In OOPSLA, pages 307–309. ACM, 2010.

7. The Eclipse Foundation. The Eclipse Project Website. http://www.eclipse.org,
2009. Accessed Sept. 2022.

8. E. Gamma and K. Beck. Contributing to Eclipse: Principles, Patterns, and Plugins.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2003.

9. T. S. Hoang and D. Dghaym. Event-B and Rodin Documentation Wiki: CamilleX.
http://wiki.event-b.org/index.php/CamilleX, 2018. Accessed Sept. 2022.

10. T.S. Hoang, C. Snook, D. Dghaym, A. Salehi Fathabadi, and M. Butler. Building
an extensible textual framework for the rodin platform. F-IDE 2022, Lecture Notes
in Computer Science (to be published), 2022.

11. K. Morris, C. Snook, T. S. Hoang, G. Hulette, R. Armstrong, and M. Butler.
Formal verification and validation of run-to-completion style state charts using
event-b. Innovations in Systems and Software Engineering, Mar 2022.

12. The University of Southampton. The UML-B website. https://uml-b.org/, 2021.
Accessed Sept. 2022.

13. The Deploy Project. The deploy project website. http://www.deploy-project.

eu/, 2008. Accessed Sept. 2022.

14. The Graphical Modelling Project. The GMP project website. https://www.

eclipse.org/modeling/gmp/, 2010. Accessed Sept. 2022.

15. The Rodin Project. Rigorous open development environment for complex systems.
http://rodin.cs.ncl.ac.uk/, 2004. Accessed Sept. 2022.

16. The XText Project. The XText project website. https://www.eclipse.org/

Xtext/, 2020. Accessed Sept. 2022.

17. R. Razali, C. Snook, M. Poppleton, and P. Garratt. Usability assessment of a UML-
based formal modeling method using a cognitive dimensions framework. Human
Technology, 4(1):26–46, May 2008.

18. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison-Wesley, Reading, MA., 1998.

19. M.Y. Said, M. Butler, and C. Snook. Language and tool support for class and
state machine refinement in UML-B. In A. Cavalcanti and D. Dams, editors, FM
2009: Formal Methods, pages 579–595, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

20. C. Snook and M. Butler. UML-B: formal modelling and design aided by UML.
ACM Transactions on Software Engineering and Methodology, 15(1):92–122, 2006.

http://www.eclipse.org
http://wiki.event-b.org/index.php/CamilleX
https://uml-b.org/
http://www.deploy-project.eu/
http://www.deploy-project.eu/
https://www.eclipse.org/modeling/gmp/
https://www.eclipse.org/modeling/gmp/
http://rodin.cs.ncl.ac.uk/
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/


8 C.F. Snook et al.

21. C. Snook, F. Fritz, and A. Iliasov. Event-B and Rodin Documentation Wiki: EMF
Framework for Event-B. http://wiki.event-b.org/index.php/EMF_framework_

for_Event-B, 2009. Accessed Sept. 2022.
22. C. Snook and R. Harrison. Practitioners’ views on the use of formal methods: an

industrial survey by structured interview. Information and Software Technology,
43(4):275–283, 2001.

23. C. Snook and R. Harrison. Experimental comparison of the comprehensibility of a z
specification and its implementation in java. Information and Software Technology,
46(14):955–971, 2004.

24. D. Steinberg, F. Budinsky, M. Paternostro, and Ed Merks. Eclipse Modeling Frame-
work. The Eclipse Series. Addison-Wesley Professional, 2nd edition, 2008.

http://wiki.event-b.org/index.php/EMF_framework_for_Event-B
http://wiki.event-b.org/index.php/EMF_framework_for_Event-B

	Developing the UML-B modelling tools

