
Correct-by-Construction Synthesis of
Sequential Algorithms

Dominique Cansell1 and Neeraj Kumar Singh2

1 EBRP, Lessy, France
dominique.canselll@gmail.com

2 INPT-ENSEEIHT / IRIT, University of Toulouse, Toulouse, France
nsingh@enseeiht.fr

Abstract. Jean-Raymond Abrial introduced a method in 2001 for constructing
sequential algorithms using a correct by construction approach, which involves
using IF and WHILE event merging rules on a concrete model to ensure correct-
ness. However, manual derivation of sequential algorithms is error-prone due to
the lack of tool support. To address this issue, we present a tool to automate the
merging rules proposed by Abrial. This tool allows users to generate sequential
algorithms from a verified abstract model and refined models in Event-B, while
preserving given invariants. One key feature of the tool is the creation of a com-
plex guard binary tree structure derived from the Event-B specification, aiding in
sequential algorithm generation and error identification. The tool has been evalu-
ated using standard examples developed by Abrial, demonstrating the importance
of automating sequential algorithm derivation without relying on post-verification
steps.

Keywords: Sequential algorithms · Correct-by-construction · Event-B · Refine-
ment and Proofs.

1 Introduction

A key feature of Event-B [3] and B methods [1] is to offer correct-by-construction
support for building complex systems. Several industry initiatives [4, 2, 10] have suc-
cessfully employed these approaches in the rigorous development of software systems
to detect flaws at an early stage of system development and to build confidence in the
correctness of their systems. These methods allow us to design a complex system ab-
stractly and then gradually refine it to a concrete level that is very close to implemen-
tation. Generating programming language source code manually from concrete models
can be a potentially error-prone process. However, there are some prototype tools avail-
able, but they may not produce code that closely resembles traditional programs. As
a result, it is difficult to employ formal techniques approaches in traditional software
development, and many industries avoid using them. We argue that one explanation for
this is a lack of tool support for synthesising sequential algorithms or source code as
classical programs.

To synthesize sequential algorithms, J. R. Abrial proposed many examples of algo-
rithms construction using refinement with his two merge events rules to produce con-
ditional and loop algorithms and one rule to add initialisation in 2001. From 2014 to

2 Cansell and Singh

2019 J. R. Abrial gave lecture “Analysing and Constructing Computer Programs" espe-
cially in Shangai. Twenty two years after J. R. Abrial ask to D. Cansell to work again
on this topic. Many others examples are developted by D. Cansell in the EBRP project:
compute the n first prime numbers (many versions), bubbelsort (many versions), Dutch
Flag, Better decomposition of a natural n (it’s a set of natural numbers where the sum
is n and which maximalize the product). A tool to apply JRA’s merging rules was de-
velopted in 2019 in Shangai [17] (Li Qin team) but the tool is not complete (some side
conditions are missing) and require human interaction.

In this study, we present a new automatic tool for automating the merging rules pro-
posed by Abrial under the umbrella of EB2ALL [14, 11, 15] to produce correct sequen-
tial algorithms. EB2ALL is a code generation tool developed by N. K. Singh that auto-
mates the process of generating code in multiple programming languages, including C,
C++, Java, C#, Solidity, and others. EB2Algo tool allows users to generate sequential
algorithms from a verified abstract model and refined models in Event-B, while pre-
serving given invariants. One key feature of the tool is the creation of a complex guard
binary tree structure derived from the Event-B specification, aiding in code generation
and error identification. The tool has been evaluated using standard examples developed
by Abrial and Cansell, demonstrating the importance of automating sequential algo-
rithm derivation without relying on post-verification steps. In addition, the evaluation
of this tool reveals its potential to improve the creation and verification of sequential
algorithms, making it a significant asset for software engineers and academics in the
field.

The famous "Dutch Flag" from Dijkstra [6] is used throughout the paper as an ex-
ample to explain

– how can we develop it correctly using Event-B method
– how can we produce by hand a correct algorithm using JRA’s rules
– how can we generate this algorithm (and others) using the new tool EB2Algo illus-

trated in this paper.

The remainder of this paper is organized as follows. Section 2 provides a brief
overview of the key elements of the Event-B modeling language, including refinement.
Section 3 describes the development of the Dutch Flag example. Section 4 presents the
JRA rules for constructing sequential algorithms and provides side conditions demon-
strated using the Dutch Flag example. Section 5 outlines the core idea of designing
guard binary tree for deriving sequential algorithms based on JRA rules, followed by
the implementation of a Rodin plugin called EB2Algo. Section 6 provides an assess-
ment, and related work is presented in Section 7. Finally, Section 8 concludes the paper
with future work.

2 Event-B modeling language

This section presents the fundamental concepts of the Event-B modeling language [3],
which is based on set theory and first order logic (FOL), as well as it allows to design
a complex system using a correct-by-construction approach. The design process con-
sists of a series of refinements of an abstract model (specification) leading to the final
concrete model.

Correct-by-Construction Synthesis of Sequential Algorithms 3

There are two main modeling components: Context and Machine. Context model de-
scribes the static characteristics of a system using carrier sets (s), constants (c), axioms
(A(s, c)) and theorems (T_c(s, c) proved with previous axioms or theorems). Machine
model describes the dynamic behavior of a system using variables (x), invariants (I(x)),
theorems (T_m(x) proved with previous invariants, axioms or theorems) and a set of
events modifying a set of variables (state) represents the core concepts of a machine.
The relationship between Event-B model components is described using terms such as
refines, extends, and sees.

An event is a state transition in a dynamic system an event can be deterministic
(DE), guarded (GE) or non deterministic (NDE). 0n an event we can define a Before-
After predicate (BA(x,x’)) which express the relation between x (value of x before the
event) and x′ (value of x after the event).

DE x := E(x) x′ = E(x)
GE when G(x) then x := E(x) end G(x) ∧ x′ = E(x)

NDE any α where G(α, x) then x := E(α, x) end ∃α ·G(α, x) ∧ x′ = E(α, x)

There are Proof Obligations (PO) to prove the invariant I(x):
A(s, c) ∧ I(x) ∧ BA(x, x′) ⇒ I(x′). We have also a PO for the initialization

using an After Predicate.
The refinement process allows for the introduction of new features or more specific

behavior to a model of a system. This technique allows for the gradual modeling of a
system and the strengthening of invariants to incorporate more detailed behavior. By
modifying the state description, the refinement approach transforms an abstract model
into a more concrete version. This is achieved by refining each abstract event to its
corresponding concrete version or by adding new events. The abstract and concrete state
variables are connected through gluing invariants. The verification process ensures that
each abstract event is correctly refined by its concrete version through the generation
of proof obligations. For example, if the abstract model AM has a state variable x
and an invariant I(x), it is refined by the concrete model CM with a variable y and a
gluing invariant J(x, y) (If there are common variables the abstracts one are renamed
and the equality between both is added to the gluing invariant). For each event we have
an abstract before-after predicate BAA(x, x′) and a concrete one BAC(y, y′). The
following PO prove invariance and refinement of the event:
A(s, c) ∧ I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ ∃x′ · J(x′, y′) ∧ BAA(x, x′). We have
also a PO for the initialization using an After Predicate.

For a variant V (y) each convergent event decrease the positive variant:
A(s, c) ∧ I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ V (y) ≥ 0 ∧ V (y′) < V (y) .
More details on POs can be found in [3].

Rodin is an open source framework that supports the development, verification and
validation of Event-B models. It offers model checking, animation with ProB, and code
generation features. It also allows for the integration of external provers related to first-
order logic (FOL) and satisfiability modulo theories (SMT), aiding in the proof process
for increasing proof automation. Additionally, Rodin enables the development of plug-
ins extensions to enhance its core functionality as well as to provide interoperability
with other tools.

4 Cansell and Singh

3 Correct-by-Construction Modeling of Dutch Flag using Event-B

In this section, the Dutch Flag case study is used as a practical example throughout
the paper to illustrate the concepts and the JRA’s IF and WHILE rules, as well as the
development of the plugin EB2Algo for automation.

The well-known "Dutch Flag" from Dijkstra [6] is compared to the quick sort par-
tition operation, but it is also a sorting algorithm based on three ordered colors (blue,
white, and red). If all three colors are present in the array (blue, white, and red), the
array will contain all blue values first, then all white values, and finally all red values.

At the end, g contains all of the values of f , but in order. A sorting algorithm of f
finds a permutation PI of index of f such that PI; f is sorted. We will demonstrate
how to build this program from this property.

3.1 Abstract model of Dutch National Flag

In a Rodin context, there are constants n and f representing a natural number (n ∈ N1)
and a function ((f ∈ 0..n− 1→ 0..2), respectively. n represents a number greater than
or equal to 1, while f contains values to be sorted. The values in f correspond to colors
- 0 is blue, 1 is white, and 2 is red. The algorithm’s result will be stored in the variable
g. An abstract event final will compute the result in a single "magically" shot.

EVENT final
any
PI

where
PI ∈ 0..n− 1 ↣↠ 0..n− 1
∀i, j · i ∈ 0..n− 1 ∧ j ∈ i..n− 1 ⇒ f(PI(i)) ≤ f(PI(j))

then
g := PI; f

end

g ∈ 0..n−1 7→0..2 is the trivial invariant. Each new event (in refinement) holds this
invariant. If final occurs, g will well contain all the values of f in the good order. It’s
clearly a sorting algorithm. This model is very close to the PRE and POST conditions
of an algorithm.

{PRE} Algo {POST}
EVENT Algo

when
POST

end

If Algo is an abstract algorithm we get this event, where constants hold PRE.
Thanks to the refinements which ensure that all refinements of event final hold post-
condition and thanks to variants which ensure that all new events will not take the
control for ever then event final will trigger.

3.2 First refinement: compute permutation

To handle the refinement proof for the event final, we require the following invariants:
we have the permutation variable Pi, as well as the variables b, w, and r.

Correct-by-Construction Synthesis of Sequential Algorithms 5

Pi ∈ 0..n− 1↣↠ 0..n− 1
b ∈ 0..n
w ∈ 0..n
r ∈ −1..n− 1

b ≤ w
∀i · i ∈ 0..b− 1⇒ f(Pi(i)) = 0
∀i · i ∈ b..w − 1⇒ f(Pi(i)) = 1
∀i · i ∈ r + 1..n− 1⇒ f(Pi(i)) = 2

The defined variables are initialize as Pi := 0..n−1� id || g := f || b := 0 || w :=
0 || r := n − 1. The event final has been refined in the following ways, and three new
events (swap_wr, swap_bw and progress_w) have been added. In the event final, a
new guard w > r is added, and a witness for the abstract variable PI is defined. This
event’s action is updated with a new witness Pi and becomes g := Pi; f . In the event
swap_wr, we introduce two guards w ≤ r and f(Pi(w)) = 2, as well as three actions
for swapping in Pi, decreasing r by 1, and abstractly computing g.

EVENT final
when
w > r

with
PI = Pi

then
g := Pi; f

end

EVENT swap_wr
when
w ≤ r
f(Pi(w)) = 2

then
Pi := Pi �− {w 7→ Pi(r), r 7→ Pi(w)}
r := r − 1
g :∈ 0..n− 1 7→ 0..2

end

In the next event swap_bw, we introduce two guards w ≤ r and f(Pi(w)) = 0, and
four actions for swapping in Pi, increasing b and w by 1, and abstractly computing g.
Finally, in the event progress_w, we introduce two guards w ≤ r and f(Pi(w)) = 1,
and an action for increasing w by 1.

EVENT swap_bw
when
w ≤ r
f(Pi(w)) = 0

then
Pi := Pi �− {w 7→ Pi(b), b 7→ Pi(w)}
b := b + 1
w := w + 1
g :∈ 0..n− 1 7→ 0..2

end

EVENT progress_w
when
w ≤ r
f(Pi(w)) = 1

then
w := w + 1

end

Additionally, we introduce a variant r − w in this refinement for all the introduced
events. To ensure the correct refinement, all the generated proof obligations (POs) are
discharged using Rodin proving tools.

3.3 Second refinement

In this refinement, we remove the permutation variable Pi that is now hide in variable
g by using the gluing invariant: g = Pi ; f . All events are further refined below.

There is only one guard w > r that must be satisfied for the event final in order to
determine the final results of algorithms computed in g. Because of the gluing invariant,
no action is required in this event. In the refined event swap_wr, we introduce two

6 Cansell and Singh

new guards g(w) ̸= 1 ∧ g(w) ̸= 0 by refining the abstract guard f(Pi(w)) = 2
((Pi; f)(w) = g(w). The gluing invariant holds because g�−{w 7→ g(r), r 7→ g(w)} =
(Pi�− {w 7→ Pi(r), r 7→ Pi(w)}); f

EVENT final
when
w > r

then
end

EVENT swap_wr
when
w ≤ r
g(w) ̸= 1
g(w) ̸= 0

then
g := g �− {w 7→ g(r), r 7→ g(w)}
r := r − 1

end

In the next event, swap_bw, the abstract guard f(Pi(w)) = 0 is refined by intro-
ducing two new guards: g(w) = 0 and g(w) ̸= 1 (which can be a guard theorem). In the
actions, the action related to Pi is eliminated, and g is updated with a swapping between
g(b) and g(w). Finally, in the event progress_w, the abstract guard f(Pi(w)) = 1 is
refined to g(w) = 1, while the actions of the event remain the same.

EVENT swap_bw
when
w ≤ r
g(w) = 0
g(w) ̸= 1

then
g := g �− {w 7→ g(b), b 7→ g(w)}
b := b + 1
w := w + 1

end

EVENT progress_w
when
w ≤ r
g(w) = 1

then
w := w + 1

end

4 Construction of Sequential Algorithms

In 2001, J. R. Abrial defined two rules for generating a correct sequential algorithm
(see Chapter 15 in [3]). These two rules, M_IF and M_WHILE, merge two events
(or algorithms). A guarded algorithm can be written as when B then S end,
where S is an algorithm: such as assignment (:=), a conditional, a sequential or a loop.

The JRA rules for M_IF, M_WHILE, and M_INIT are shown below. For more in-
formation, please see Chapter 15 of the Abrial book in [3].

when
P
Q

then
S

end

when
P

¬Q
then

T
end

;

when
P

then
if Q then

S
else

T
end

end

M_IF

when
P
Q

then
S

end

when
P

¬Q
then

T
end

;

when
P

then
while Q do
S

end ;
T

end

M_WHILE

Init final_Algo ; Init ;
final_Algo M_INIT

Correct-by-Construction Synthesis of Sequential Algorithms 7

4.1 Side conditions

A list of side conditions proposed by Abrial is provided as follows:

– Rule M_IF is applied when both events are defined in the same refinement or when
the rule M_WHILE cannot be applied,

– Rule M_WHILE is applied when the first event is defined in a deeper refinement
and when P is preserved under S when Q holds. When the loop finish ¬Q holds
and T occurs. It’s the second event only is P holds (P must be invariant under S).
In other case we apply rule M_IF,

– Rule M_INIT is apply only when we have a non guarded event FINAL_ALGO (all
events are merged).

J. R. Abrial defined these rules before the notion of anticipated or convergent events.
The order to decide between an IF or a WHILE is slightly different. We assign two
levels for an event evt. To identify a machine we assign to each machine a number: 0
for the abstract machine and i for the ith refinement.

To compute convergent and refinement levels, we define the following two func-
tions: convlvl(evt) is the refinement level where evt is convergent; deflvl(evt
is the refinement level at which evt is defined for the first time.

The level of an event evt is convlvl(evt) 7→ deflvl(evt), and the order to
compare two events is the lexicographic order. The event final is never convergent, but
for convenience convlvl(final) is set to 0. The following are the convergent and
refinement levels for all events:

level(final) = 0 7→ 0, level(swap_bw) = 1 7→ 0, level(swap_wr) = 1 7→
0 and level(progress_w) = 1 7→ 1.

The level of an algorithms is the small level (the more abstract one).

4.2 Construction of the Dutch Flag algorithm

This section details the merging process specifically related to the last concrete model
of the Dutch Flag.

To merge the events swap_bw and swap_wr together, an IF rule can be used since
both events have the same level, which is 1 7→ 0 = 1 7→ 0. The merged event
swap_bwr is shown below.

EVENT swap_bwr
when
w ≤ r
g(w) ̸= 1

then
if g(w) = 0 then
g := g �− {w 7→ g(b), b 7→ g(w)}
b := b + 1
w := w + 1

else
g := g �− {w 7→ g(r), r 7→ g(w)}
r := r − 1

end

EVENT swap_bwr_progress_w
when
w ≤ r

then
if g(w) = 1 then
w := w + 1

else
if g(w) = 0 then
g := g �− {w 7→ g(b), b 7→ g(w)}
b := b + 1
w := w + 1

else
g := g �− {w 7→ g(r), r 7→ g(w)}
r := r − 1

end
end

8 Cansell and Singh

Furthermore, we can merge the events swap_bwr (Level: 1 7→ 0) and progress_w
(Level: 1 7→ 1) together. It is not possible to use a WHILE rule since the condition
w ≤ r is not preserved by w := w + 1. Instead, we apply the rule M_IF. Apply the
M_IF rule, the merged event swap_bwr_progress_w is shown above.

Finally, we can merge the events swap_bwr_progress_w (Level:1 7→ 0) and
final (Level: 0 7→ 0) together using the M_WHILE rule since the condition ⊤ true is
always preserved. The merged event swap_bwr_progress_w_final is shown below.

EVENT swap_bwr_progress_w_final
while w ≤ r do

if g(w) = 1 then
w := w + 1

else
if g(w) = 0 then
g := g �− {w 7→ g(b), b 7→ g(w)}
b := b + 1
w := w + 1

else
g := g �− {w 7→ g(r), r 7→ g(w)}
r := r − 1

end
end

od ;

EVENT Algo_Dutch_Flag
g := f || b := 0 || w := 0 || r := n− 1 ;
while w ≤ r do

if g(w) = 1 then
w := w + 1

else
if g(w) = 0 then
g := g �− {w 7→ g(b), b 7→ g(w)}
b := b + 1
w := w + 1

else
g := g �− {w 7→ g(r), r 7→ g(w)}
r := r − 1

end
end

od ;

Finally, we can use the rule M_INIT to merge the events Initialisation and swap_bwr_progress_w_final
together. The final merged event Algo_Dutch _Flag is shown above.

5 Tool Support for Sequential Algorithms

This section describes the core development of the EB2Algo tool, specifically the deriva-
tion of the guard binary tree, determining side conditions for JRA rules, determining
IF and WHILE rules, synthesising sequential algorithms, and Rodin plugin implemen-
tation. Furthermore, each step is illustrated with the Dutch Flag example.

5.1 Derivation of Guard Binary Tree

A guard binary tree is a form of binary tree that uses guards to split a set of events in its
nodes. Each node in the tree has a guard condition and a collection of events. The guard
condition is used to determine how to partition the events into left and right child nodes.
For example, let’s say we have a guard binary tree with a root node containing the guard
condition Q. If an event satisfies Q, it is placed in the left child node; otherwise, it is
placed in the right child node. The partitioning process is applied recursively to assign
each event in the leaf node, creating the entire tree structure. In addition to the guard
condition, a guard binary tree can also include other checks, such as ensuring that the
tree is a full binary tree. A full binary tree is a tree in which every node has either 0 or
2 children. This requirement helps maintain the structural integrity of the tree.

Furthermore, a great care must be taken to guarantee that all tree nodes include only
events that meet either Q or ¬Q. Each leaf node can only contain one event. There is
an issue with generating the guard binary tree if a leaf node includes more than one

Correct-by-Construction Synthesis of Sequential Algorithms 9

Algorithm 1 An algorithm for deriving Guard Binary Tree
1: function GUARDBINARYTREE(treeNode, evtList, grd)
2: evtLeftList← ϕ
3: evtRightList← ϕ
4: for each ei ∈ evtList do
5: if grd ∈ guardsOf(ei) then
6: evtLeftList← evtLeftList ∪ {ei}
7: treeNode.Left← setGrdEvts(grd, evtLeftList)
8: else if ¬grd ∈ guardsOf(ei) then
9: evtRightList← evtRightList ∪ {ei}
10: treeNode.Right← setGrdEvts(¬grd, evtRightList)
11: else
12: return False
13: end if
14: end for
15: if (card(evtLeftList) = 1) ∧ card(evtRightList) = 1) ∧ No guard left in evtLeftList and

evtRightList then
16: return True
17: else
18: return False
19: end if
20: if (evtLeftList > 1) then
21: for each gi ∈ guardsOf(evtLeftList(1)) do
22: if gi is not added in Binary Tree then
23: grdLeft← gi
24: end if
25: end for
26: return GURADBINARYTREE(treeNode.Left, evtLeftList, grdLeft)
27: end if
28: if (evtRightList > 1) then
29: for each gi ∈ guardsOf(evtRightList(1)) do
30: if gi is not added in Binary Tree then
31: grdRight← gi
32: end if
33: end for
34: return GURADBINARYTREE(treeNode.Right, evtRightList, grdRight)
35: end if
36: end function

event, there is no common guard condition between the left and right child nodes, or
there are no events in either the left or right child node. The core algorithmic structure
for recursively deriving a guard binary tree is presented by Algorithm 1. We employ
additional predefined functions in our algorithm. These functions are guardsOf to
extract a list of guards for an event, setGrdEvts to update a tree node with a guard
and a list of events, and selectCommonGuard to determine a common guard for a
group of events.

5.1.1 Guard Binary Tree of Dutch Flag The guard binary tree of the Dutch Flag
is depicted in Fig. 1. Fig. 1(a) is derived from the concrete model of the selected case
study, and this tree is equivalently presented in the implemented tool in Fig. 1(b). This
tree is derived using our implemented Algorithm 1. The root node is initially empty,
indicated as ⊤ and the first guard (r < w) is chosen from the final event to discover
a list of events for the left and right nodes. Because this guard is only in the final
event, the left node has only one event and the right node contains the remaining events
(progress_w; swap_bw; swap_wr). Then a common guard (w ≤ r) is identified from
the list of events on the right node. We do not need to split any more as the left node

10 Cansell and Singh

(a) Guard binary tree
layout

(b) Guard binary tree in Rodin

Fig. 1: Guard binary tree of the Dutch Flag

has only one event. However, the right node includes three events, we choose a guard
from the list of events not used in the guard binary tree. This guard (g(w) = 1) is
selected from the event progress_w, which is used to split all three events for the left
and right nodes. The left node has only one event, progress_w, and the right node has
two events, (swap_bw; swap_wr) with the same guard (g(w) ̸= 1). As the right node
has two events, we choose a guard from the list of events not used in the guard binary
tree. This guard (g(w) = 0) is selected from the event swap_bw, and it used to split the
events into the left and right nodes, and a guard is chosen form the right node. Finally,
the left and right nodes have only one event, we do not need to split any more left and
right nodes. Note that the obtained binary is a full binary tree satisfying the required
condition for synthesizing sequential algorithms.

5.2 Determining side conditions

This section presents an overview of additional developed algorithms for establishing
convergence and refinement levels, guard preservation, determining IF and WHILE
rules for merging events, and finally synthesis of sequential algorithms.

5.2.1 Determining convergence and refinement levels. There are two important
elements, convergence and refinement, of Event-B play a crucial role in choosing IF
and WHILE rules on the left and right nodes for synthesizing sequential algorithms.
In Event-B, convergence refers to how a model behave along the refinement hierar-
chy. Convergence happens when a model’s behavior remains constant as refinement
advances, which means that any properties met in the initial model are satisfied in all
successive refinements. Convergence is important because it ensures that the refined
models consistent with the initial model and maintain the required properties are pre-
served. Event-B employs refinement levels to represent various stages of abstraction
and detail in system development. The refinement hierarchy begins with an abstract
model and evolves through refinements to a concrete implementation. Each refinement
level adds additional detail, perfecting previous levels’ behaviors and attributes. The
levels are organized in a hierarchical system, with each level improving on the one be-
fore it. The convergence and refinement level for each event is defined by the first time
an event is labeled as a convergent event, and the concrete event is presented for the first

Correct-by-Construction Synthesis of Sequential Algorithms 11

time at any level of the refinement chain, respectively. Note that the leaf nodes contain
only a single event, the convergence level and refinement level may be derived directly,
whereas nodes with many events must identify the convergent level and refinement level
based on lexicography comparison of merging events. The determined convergent and
refinement levels are set for each node of the guard binary tree (see Fig. 2).

Convergent and refinement levels of the Dutch Flag. Fig. 2 depicts a guard binary tree
with convergent and refinement levels. The final event is introduced with the convergent
tag at the abstract level, so it defined as (0, 0). The events swap_bw, swap_wr are
refined events of the abstract event swap and were tagged as convergent in the first
refinement, therefore they have the same convergent and refinement levels (1, 0). The
progress event is introduced in the first refinement and tagged as convergent event, so it
has both convergent and refinement levels (1, 1). The convergent and refinement levels
of the combined events swap_bw; swap_wr is determined through the lexicography
comparison of convergent and refinement levels of each events, so it is determined
as (1, 0). Similarly, for the combined events progress_w; swap_bw; swap_wr the
convergent and refinement levels are determined as (1, 0). The levels computed by the
tool are equivalent to the manually computed levels in Section 4.

5.2.2 Guard Preservation. Guard preservation is an important property to determine
side conditions, particularly when selecting the WHILE rule. If this property holds then
the WHILE rule is used; otherwise the IF rule is used. Guard preservation in the same
node and all upper level guard binary tree nodes refers to the property that if a guard
predicate is true at the current node, it remains true as we move up the tree towards the
root. In order to demonstrate guard preservation, we need to show that all the events
for the current node and other upper level binary tree nodes do not modify the free
variables used for defining the upper level guards. This ensures that the guard predicate
is preserved throughout the tree. Note that if we do not modify free variables, the guard
is retained; however, if we modify free variables, we must check it using another method
(which is beyond the scope of this study). POs are an alternate method for ensuring
guard property preservation. In the future, we will incorporate such a method within
our tool. The guard binary tree contains preserved guards at each node, which can be
used to determine the necessary condition for the WHILE rule (refer to Fig. 2).

Guard preservation of the Dutch Flag. Fig. 2 depicts a guard binary tree with a list of
guards visited in upper level nodes. For example, in the node [progress_w; swap_bw;
swap_wr], both the left and right nodes do not have the same convergence and refine-
ment levels, so we can use the WHILE rule if only if the the guard (w ≤ r) is preserved.
But, it is not preserved by left or right node, because, the free variables (w and r) of the
guard (w ≤ r) are modified by the events progress_w; swap_bw; swap_wr, so the
WHILE rule is not applicable for merging the events, thus based on side conditions (for
more detail see Section 4), we select the IF rule for merging these events. Similarly,
in the root node, both the left and right nodes do not have the same convergence and
refinement levels, but guard is preserved (GP:(⊤)) as shown in Fig. 2, thus the WHILE
rule is determined to merge all the root node’s events [final; progress_w; swap_bw;
swap_wr].

12 Cansell and Singh

Fig. 2: Final guard binary tree with side conditions

5.2.3 Determining IF and WHILE Rules Section 3 describes the IF and WHILE
rules, proposed by J. R. Abrial, for synthesizing sequential algorithms. These rules are
encoded in the developed tool for defining IF and WHILE rules whenever there is a need
to merge two nodes. However, it is important to note that these rules are not applicable
to the leaf nodes of the guard binary tree. To ensure correct node merging and condition
preservation at multiple refinement levels, we calculate the convergent and refinement
levels, compare the nodes, verify for upper level guard preservation, and define merging
procedures. It is important to note that IF and WHILE condition correspond to the
guard predicate Q, while the negation condition of the IF and WHILE corresponds to
the guard predicate ¬Q. This selection process is explained in more detail in Section 4.

IF and WHILE rules of the Dutch Flag. Fig. 2 depicts a guard binary tree with non-
leaf node IF and WHILE rules based on the JRA side conditions by determining con-
vergent and refinement levels as well as guard preservation. For example, the non-leaf
node [swap_bw; swap_wr] has an IF rule because the both child nodes have same
convergent and refinement level. Similarly, the other intermediate node [progress_w;
swap_bw; swap_wr] has also an IF rule, because guard is not preserved, and fi-
nally in the root node, we have WHILE rule to merge all the root node events [final;
progress_w; swap_bw; swap_wr] because the child nodes have different convergent
and refinement levels and guard is preserved (GP:(⊤)).

5.3 Synthesizing sequential algorithm

This section describes synthesizing sequential algorithm using the built guard binary
tree. Once the tree is constructed, the algorithm can be synthesized by traversing the tree
in a depth-first manner. Furthermore, the current node is utilised to build the required
algorithm based on the left and right nodes, the guard chosen based on IF and WHILE
rules, and the choice of IF or WHILE rule.

5.3.1 Synthesizing sequential algorithm of Dutch Flag Listings.1.1 shows the gen-
erated algorithm from the Dutch flag example. Lines 8-14 are generated by the node,
which consists of two events (swap_bw, swap_wr) that use IF rules (see Fig. 2). Simi-
larly, another intermediate node of the guard binary tree with three events (progress_w,
swap_bw, swap_wr) using the IF rule with the condition (guard) of the left node in
lines 6-8. Finally, Lines 5 and 15 are generated from the root node applying the WHILE
rule. Lines 1-4 are used to set the initial value of each variable extracted from the Ini-
tialisation event.

Correct-by-Construction Synthesis of Sequential Algorithms 13

1 g := f ||
2 b := 0 ||
3 w := 0 ||
4 r := n - 1
5 while w ≤ r do
6 if g(w)=1 then
7 w := w+1
8 else if g(w)=0 then
9 g := g �− {w 7→ g(b),b 7→ g(w)} ||

10 w := w+1 ||
11 b := b+1
12 else
13 g := g �− {w 7→ g(r),r 7→ g(w)} ||
14 r := r - 1
15 od;

Listing 1.1: Generated Algorithm of Dutch Flag

5.4 Implementation as Rodin plugin

In this section, we introduce our newly developed plugin tool EB2Algo1, which is
designed to generate sequential algorithms from Event-B models in the Rodin plat-
form using the Eclipse development environment. The EB2Algo plugin is part of the
EB2ALL [14, 11] project, which focuses on code generation tools and methodologies
for Event-B to different programming languages. The plugin utilizes the core architec-
ture of EB2ALL to parse Rodin projects and includes new algorithms for designing
guard binary trees, side conditions, guard preservation, and algorithm generation. The
plugin allows users to create algorithmic models within the Rodin platform using the
user-friendly interface provided by Eclipse. Users can select a Rodin project and the
tool will automatically generate a sequential algorithm, which is then stored in a file.
The tool also generates a guard binary tree and logs details related to the algorithmic
generation, which are stored in a log file. The log file is primarily used to identify any
bugs or issues that may have occurred during the algorithm generation process. A dialog
box is also displayed to notify users whether the algorithm was generated successfully
or if there are any bugs that need to be addressed. With the ability to extend the tool to
generate algorithms in different programming languages, EB2Algo provides a conve-
nient and efficient way to automatically generate sequential algorithms from Event-B
models within the Rodin platform.
Fig. 3 depicts a screen capture of the EB2Algo within the Rodin environment. Once
the plug-in is installed successfully, the Translator/EB2Algo menu along with a tool
button will become visible. To create a sequential algorithm for a formal model, the
user can select it from either the EB2Algo menu or the tool button, which will bring up
a dialog box. This dialog box presents a list of currently active projects, and the user
can choose any project to generate the sequential algorithm. The generated algorithm
will be accompanied by a log file containing information about the algorithm generation
process in the Rodin project folder.

1Download: https://sites.google.com/site/singhnne/eb2algo

14 Cansell and Singh

Fig. 3: Screenshot of the EB2Algo plugin in Rodin

6 Evaluation

The developed tool, EB2Algo1, facilitates the sequential algorithm generation from
classic Event-B models using JRA’s IF and WHILE rules. These models are designed to
support correct-by-construction approaches. We analyze our source model in the Rodin
tool and generate sequential algorithms while preserving the given properties. To meet
the required side conditions and preserve guards, we derive a guard binary tree from the
Event-B models. Our tool, EB2Algo, has successfully generated sequential algorithms
for a total of 25 Rodin projects2. These projects can be categorized into two sets, with
17 projects initially developed by J. R. Abrial and 8 projects developed by D. Cansell.
The 17 projects developed by J. R. Abrial consist of various algorithms, including:
2 algorithms for performing division using the Euclidean method, 2 algorithms for cal-
culating the square root of an integer, 2 algorithms for searching a specific value within
an array or a matrix, 2 algorithms for finding the maximum value in an array, 2 algo-
rithms for finding the minimum value in an array, 1 algorithm for reversing the elements
of an array, 1 algorithm for partitioning an array, 1 algorithm for inverting a natural
function (an abstract version of the square root), 1 algorithm for sorting elements in an
array using the selection sort, method, 2 algorithms for reversing pointers, 1 algorithm
for calculating the greatest common divisor (gcd).
On the other hand, the 8 projects developed by D. Cansell consist of different algo-
rithms, including: 7 algorithms for sorting elements in an array using the bubble sort
method, 2 algorithms for sorting elements in an array using the quicksort method, 1
algorithm for sorting elements in an array using the selection sort method (a new ver-
sion using permutation), 1 algorithm for the Dutch flag, 8 algorithms for generating the
nth first prime numbers, 1 algorithm for calculating the greatest common divisor (gcd)
using the modulus operator, 1 algorithm for better decomposition of natural number.
Overall, our tool has successfully generated sequential algorithms for a diverse range
of projects, covering various computational problems and algorithms used in Rodin

2Download: https://www.irit.fr/EBRP/software

Correct-by-Construction Synthesis of Sequential Algorithms 15

projects. Note that some of the projects consist of multiple models, resulting in differ-
ent sets of algorithms. We first verify these examples in Rodin and then use our tool
to produce sequential algorithms. Additionally, we manually check each algorithm to
ensure their correct generation.
Some of the Event-B projects have only two or three refinements, while others have a
maximum of 8 to 10 refinements. Some models are complex and contain the required
axioms and theorems. Despite this complexity, the verification of the algorithms and
the generation of sequential algorithms occur without any problems. In each gener-
ated algorithm, a guard binary tree is successfully created, preserving the guards and
producing the required algorithm. Through lexicographic analyses of convergence and
refinement structure, the IF and WHILE conditions are correctly identified. During the
construction of a guard binary tree, if any element (i.e., guard) is not found in the gener-
ated tree, the tool raises an exception with precise details. Rodin tool may not determine
that the missing element is an error in the model, but it is a new condition that needs to
be fulfilled based on JRA’s rules.
Our tool, EB2Algo, contains over 5000 lines of code and is user-friendly. It is easily
extendable to generate code in various target programming languages. The generated
algorithms are stored in a file, and the code generation process is logged in another file.
Users can choose to manually evaluate the guard binary tree by selecting the appropriate
option. Furthermore, if any issues arise during the generation of the guard binary tree,
an exception can be generated along with the guard binary tree in construction: a guard
is perhaps missing or too many (theorem).
The developed tool, EB2Algo, and the generated sequential algorithms are available for
download from1.

7 Related Work

Only [17] produces an algorithm uisng JRA’s merging rules, but side conditions on
guard preservation are not verified. We regret that no other work uses them. Singh et
al. [14, 11, 15] propose the EB2ALL tool set as a Rodin plugin for generating code in
several programming languages. The fundamental concept of generating source code
is quite similar to the structure of Event-B events. Each event is generated as a func-
tion with the arguments provided. Finally, all of these functions can be called from
the main program via scheduling or employed in the development of complex soft-
ware systems. A simple plugin B2C is presented in [16] to generate code in C language
from Event-B concrete model. In [13], the authors present a code generation tool called
EventB2Java for Event-B models. This tool is designed to convert Event-B models into
JML-annotated Java programs, with support for a subset of Event-B operations. In [12],
the authors present a method for producing VHDL code from Event-B formal mod-
els. They use structural similarities between the formal model and hardware description
language statements to create an automatic translation algorithm. This algorithm is im-
plemented as a Rodin tool plug-in. In [9], the authors propose an approach to ensure
that program code generated from Event-B models is correct. It achieves this by using
refinement and well-definedness restrictions, preventing runtime errors caused by se-
mantic differences and addressing issues with different interpretations of integer values.

16 Cansell and Singh

Refinement techniques are used to show that the generated code correctly implements
the original model. A user-friendly scheduling language is also proposed for specifying
event execution sequences, including the assertions properties. Note that there is no tool
has been implemented with this approach. In [7], the authors describe a new method
for building concurrent programs in Ada in Event-B by utilizing Tasking and Shared
Machines. A tasking extension structures projects for generating code for multitasking
implementations by using refinement, decomposition, and the extension. Further this
approach is explored for generating Ada programs in [8]. In [5], the authors describes
a code generation approach to produce efficient code from B formal methods [1]. They
describe a new translation process architecture that translates the B0 language to a target
programming language in sequential code. A case study on Java Card Virtual Machine
development demonstrates the approach’s effectiveness in generating efficient code.
It should be noted that there is no treatment for developing any sequential algorithm
in above mentioned tools (except in [17], which is incomplete) particularly for Event-
B modeling language. This is the first study, as far as we know, to propose a tool for
synthesizing sequential algorithms for Event-B models. The developed sequential algo-
rithms can be used to create source code in any programming language.

8 Conclusion and Future Work

This paper presented a new automatic tool, EB2Algo, that automates the merging rules
proposed by Abrial. The tool generates sequential algorithms from verified abstract
and refined Event-B models that preserve the required invariants. A significant feature
of the tool is the creation of a complex guard binary tree structure derived from the
Event-B specification, which assists in code generation and error identification. The
tool is developed in the Eclipse framework under the EB2ALL umbrella and tested
using standard 25 Event-B projects, in which 17 projects developed by J. R. Abrial,
and 8 projects (contain 21 algorithms) developed by D. Cansell. The developed tool,
EB2Algo, and the generated codes can be downloaded from1. This is a key step in
automatically deriving sequential algorithms from the Event-B model without relying
on post-verification.
This work leads to several new perspectives. First, to derive a concurrent algorithm
from the sequential version actions, where the derived algorithm can be implemented
for concurrent systems. Another key aspect in our work involves generating sequen-
tial algorithms in the preferred programming language. The next challenge is to derive
more merging rules by expressing the sequential order of events using control variables.
Finally, the last goal is for generating proof obligations that ensure the correct preserva-
tion of conditions (guards) associated with control flow statements or constructs during
program execution. This ensures that the desired behavior specified by the guards is
maintained and prevents inconsistencies in the program’s logic.

Acknowledgements. Thank you so much, J. R. Abrial, for your merging rules and
all. Thanks to Li Qin for many discussions on this topic and interesting feedback on
our proposition. The authors also acknowledge the ANR-19-CE25-0010 EBRP:EventB-
Rodin-Plus project.

Correct-by-Construction Synthesis of Sequential Algorithms 17

References

1. Abrial, J.: The B-book - assigning programs to meanings. Cambridge University Press (1996)
2. Abrial, J.R.: Formal methods: Theory becoming practice. JUCS - Journal of Universal Com-

puter Science 13(5), 619–628 (2007)
3. Abrial, J.: Modeling in Event-B - System and Software Engineering. Cambridge University

Press (2010)
4. Behm, P., Benoit, P., Faivre, A., Meynadier, J.M.: Météor: A successful application of b in a

large project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM’99 — Formal Methods. pp.
369–387. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

5. Bert, D., Boulmé, S., Potet, M.L., Requet, A., Voisin, L.: Adaptable translator of b specifi-
cations to embedded c programs. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003:
Formal Methods. pp. 94–113. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

6. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976), https://www.
worldcat.org/oclc/01958445

7. Edmunds, A., Butler, M.: Tasking Event-B: An extension to Event-B for generating concur-
rent code. In: PLACES 2011 (02/04/11) (February 2011), https://eprints.soton.
ac.uk/272006/, event Dates: 2nd April 2011

8. Edmunds, A., Rezazadeh, A., Butler, M.: Formal modelling for ada implementations: Task-
ing Event-B. In: Brorsson, M., Pinho, L.M. (eds.) Reliable Software Technologies – Ada-
Europe 2012. pp. 119–132. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

9. Fürst, A., Hoang, T.S., Basin, D., Desai, K., Sato, N., Miyazaki, K.: Code generation for
Event-B. In: Albert, E., Sekerinski, E. (eds.) Integrated Formal Methods. pp. 323–338.
Springer International Publishing, Cham (2014)

10. Lecomte, T., Déharbe, D., Prun, É., Mottin, E.: Applying a formal method in industry: A
25-year trajectory. In: da Costa Cavalheiro, S.A., Fiadeiro, J.L. (eds.) Proceedings of Formal
Methods: Foundations and Applications - 20th Brazilian Symposium, SBMF 2017, Brazil.
Lecture Notes in Computer Science, vol. 10623, pp. 70–87. Springer (2017)

11. Méry, D., Singh, N.K.: Automatic code generation from Event-B models. In: Thang, H.Q.,
Tran, D.K. (eds.) Proceedings of the 2011 Symposium on Information and Communication
Technology, SoICT 2011, Hanoi, Viet Nam, October 13-14, 2011. pp. 179–188. ACM (2011)

12. Ostroumov, S., Tsiopoulos, L.: Vhdl code generation from formal Event-B models. In: 2011
14th Euromicro Conference on Digital System Design. pp. 127–134 (2011)

13. Rivera, V., Cataño, N., Wahls, T., Rueda, C.: Code generation for Event-B. International
Journal on Software Tools for Technology Transfer 19(1), 31–52 (2017)

14. Singh, N.K.: Using Event-B for Critical Device Software Systems. Springer (2013).
https://doi.org/10.1007/978-1-4471-5260-6

15. Singh, N.K., Fajge, A.M., Halder, R., Alam, M.I.: Chapter 8 - formal verification and code
generation for solidity smart contracts. In: Pandey, R., Goundar, S., Fatima, S. (eds.) Dis-
tributed Computing to Blockchain, pp. 125–144. Academic Press

16. Steve, W.: Automatic generation of C from Event-B. In: Workshop on Inte-
gration of Model-based Formal Methods and Tools. http://www.lina.sciences.univ-
nantes.fr/apcb/IM_FMT2009/im_fmt2009_proceedings.html (2009)

17. Zhang, X.: Design and implementation of event-b code generation software based on com-
bination rule, East China Normal University Shanghai (2019)

