
Algorithms correct by construction

à la JRA

using EB2Algo

Dominique Cansell Neeraj Kumar Singh

June 2024

1

Outline 1

• JRA proposed many examples of algorithms construction in 2001

with his 2 merges events (algo)

• JRA gave lecture "Analysing and Constructing Computer Pro-

grams" from 2014 to 2019

• No many other case study

• No tool to apply JRA’s rules except an interactive one but not

complete in Shanghai (a student of Li Quin)

2

Outline 2

• JRA asked me to work again on this topics

• more EBRP algorithms: compute the n first prime numbers (many

versions), bubbelsort , Dutch Flag, Better decomposition, quick

sort, merge sort.

• instantiation plugin was used for prime numbers (¬finite(Prime)),

quicksort (variant), Better decomposition

• After these Rodin developments, I asked Neeraj to develop a tool

to produce an algorithm

3

What do this program 3

p[0]= 0; p[1]= n; t = 1;

for(i=0;i<n;i=i+1) g[i]=f[i];

while (t!=0){

if (p[t-1]==p[t]-1){ t=t-1;}

else {

a=p[t-1]; b=p[t]-1; c=g[(a+b)/2];

while (a<b)

if (g[a]<c) {a=a+1;}

else if (g[b]>c) {b=b-1;}

else {v=g[a];g[a]=g[b];g[b]=v;a=a+1;b=b-1;}

if (b<a) {k=b;}

else if (g[a]<=c) {k=b;} else {k=a-1;};

p[t+1]=p[t];

p[t]=k+1;

t=t+1;

}

};

}

4

What do this program 4

• It’s a sorting program

• at end g contains all values of f but in the order

• a permutation on index of f gives the order

• not easy to see this

5

What do this program 5

It’s a sequential version
of the famous quicksort

6

Abstract model 6

final
any
PI

where
PI ∈ 0..n− 1 �� 0..n− 1
∀i, j ·

i ∈ 0..n− 1 ∧ j ∈ i..n− 1
⇒

f(PI(i)) ≤ f(PI(j))
then
g := PI; f

end

7

After seven or eight refinements: 10 events 7

final
when
topI = 0

end

choiceI
when
boolchI = 0
topI 6= 0
stack(topI − 1)
6= stack(topI)− 1

then
boolchI := 1
binf := stack(topI − 1)
bsup := stack(topI)− 1
pv := g((stack(topI − 1)

+stack(topI)− 1)/2)
end

progress singI
when

topI 6= 0
stack(topI − 1)
= stack(topI)− 1

then
topI := topI − 1

end

progress binf
when
boolchI 6= 0
binf < bsup
g(binf) < pv

then
binf := binf +1

end

progress bsup
when

boolchI 6= 0
binf < sup
g(binf) ≥ pv
g(bsup) > pv

then
bsup := bsup− 1

end

swap
when

boolchI 6= 0
binf < bsup
g(binf) ≥ pv
g(bsup) ≤ pv

then
g := g �− {binf 7→ g(bsup)

, bsup 7→ g(binf)}
binf := binf +1
bsup := bsup− 1

end
8

compute K1
when
boolchI 6= 0
boolk = 0
bsup < binf

then
K := bsup
boolk := 1

end

compute K2
when
boolchI 6= 0
boolk = 0
bsup = binf
g(binf) ≤ pv

then
K := bsup
boolk := 1

end

compute K3
when

boolchI 6= 0
boolk = 0
bsup = binf
g(binf) > pv

then
K := binf − 1
boolk := 1

end

progress
when
boolk 6= 0 boolchI 6= 0 bsup ≤ binf

then
stack := stack �− {topI 7→ K +1 , topI +1 7→ stack(topI)}
boolchI := 0
topI := topI +1
boolk := 0

end

boolchI 6= 0 ⇒ topI 6= 0 ∧ stack(topI − 1) 6= stack(topI)− 1

What about algorithm construction ? 8

• At the end of the refinement process we have many small guarded

events

• JRA proposed to merge two events (or guarded algorithms) using

two merging rules and an additional rule for init.

• when we merge two events we get a guarded algorithm

• some side condition are necessary

9

Merging Rule M IF 9

when
P
Q

then
S

end

when
P
¬Q
then
T

end

;

when
P

then
if Q then
S

else
T

end
end

M IF

- Side Conditions:
- Both events must have been introduced at the

same refinement.

- Special Case: If P is missing the resulting "event" has no guard

10

Merging Rule M WHILE 10

when
P
Q

then
S

end

when
P
¬Q
then

T
end

;

when
P

then
while Q do

S
end;
T

end

M WHILE

- Side Conditions:

- P must be invariant under S

- The first event must have been introduced at one

refinement step below the second one.

- Special Case: If P is missing the resulting "event" has no guard
11

Merging Rule : P must be invariant under S 11

• when P is not invariant under S (or if you cannot prove P) JRA

said always use the M IF rule.

• level of the merge event: it’s the less one if the abstract one is the

small one

• rules defined in 2001 before anticipated events (2005) then I have

corrected a little level definition.

12

Merging Rule : level 12

• convergent level = level where the event is convergent convlevel(evt)

• definition level = level where the event is defined defevel(evt)

• level(evt)=convlevel(evt) 7→ defevel(evt)

• lexicographies order

• progress is defined and convergent at level 1, swap is defined at

level 0 (g :=) and convergent at level 2

13

Merge compute K2 and compute K3 13

compute K1
when
boolchI 6= 0
boolk = 0
bsup < binf

then
K := bsup
boolk := 1

end

compute K2
when
boolchI 6= 0
boolk = 0
bsup = binf
g(binf) ≤ pv

then
K := bsup
boolk := 1

end

compute K3
when
boolchI 6= 0
boolk = 0
bsup = binf
g(binf) > pv

then
K := binf − 1
boolk := 1

end

14

Merge compute K2 and compute K3 14

compute K1
when
boolchI 6= 0
boolk = 0
bsup < binf
bsup ≤ binf

then
K := bsup
boolk := 1

end

compute K2
when
boolchI 6= 0
boolk = 0
bsup = binf
bsup ≤ binf
g(binf) ≤ pv

then
K := bsup
boolk := 1

end

compute K3
when
boolchI 6= 0
boolk = 0
bsup = binf
bsup ≤ binf
g(binf) > pv

then
K := binf − 1
boolk := 1

end

15

Merge compute K2 and compute K3 15

compute K2 K3
when
boolchI 6= 0
boolk = 0
bsup ≤ binf
bsup = binf

then
if g(binf) ≤ pv then
K := bsup
boolk := 1

else
K := binf − 1
boolk := 1

end
end

16

Merge compute K2 K3 and compute K1 16

compute K1 K2 K3
when
boolchI 6= 0 bsup ≤ binf boolk = 0

then
if bsup < binf then
K := bsup
boolk := 1

else
if g(binf) ≤ pv then
K := bsup || boolk := 1

else
K := binf − 1 || boolk := 1

end
end

end

17

Merge compute K1 K2 K3 and progress 17

compute K1 K2 K3 progress
when
boolchI 6= 0 bsup ≤ binf

then
while boolk = 0 do

if bsup < binf thenK := bsup|| boolk := 1
else if g(binf) ≤ pv thenK := bsup|| boolk := 1

elseK := binf − 1|| boolk := 1
end

end
end ;
stack := stack �− {topI 7→ K + 1 , topI + 1 7→ stack(topI)}
boolchI := 0
topI := topI + 1

end

18

Merge compute K1 K2 K3 and progress 18

A while with one turn in the loop ! boolk can disapear.

compute K1 K2 K3 progress
when
boolchI 6= 0 bsup ≤ binf

then
if bsup < binf thenK := bsup
else if g(binf) ≤ pv thenK := bsup

elseK := binf − 1
end

end ;
stack := stack �− {topI 7→ K + 1 , topI + 1 7→ stack(topI)}
boolchI := 0
topI := topI + 1

end

19

EB2Algo 19

• Neeraj’s constraints: the tool need to be automatic. No interaction. No proof
obligations can be generated

• I proposed to compute a guard tree

• guards need to be completed (RED GUARDS)

20

EB2Algo 20

• the tool try to split a subset of events in two non empty subsets using a guard
G.

• one subset with all events using G as guard and the other one using ¬G as
guard. Both subsets are splited using the same algorithm (recursive) without
guards G and ¬G . All events are in the union of both subset (partition).

• when there is only one event all guards of this event are consumed.

• It’s a backtracking algorithm but G is not choiced arbitrary. We take a guard
inside an event which has the minimum number of guard (less tentatives). If G
doesn’t work we choice the next guard of the event.

• if the split abord using all guard of the event: A guard misses or there is a
deadlock. It’s the difficult part for a beginner.

21

Applying JRA’s rules 21

On the guard tree we compute

• the subset of events

• A level: it’s the minimum of all events levels of the subset. then we can decide
to apply M IF or perhaps M WHILE

• the set of guards (above) which are preserved by all events in the subset (for
a while)

• With these three attributs we can apply JRA’s rules (down-top)

22

Applying JRA’s rules 22

On the guard tree we compute

• the subset of events

• A level: it’s the minimum of all events levels of the subset. then we can decide
to apply M IF or perhaps M WHILE

• We compute the variables which doesn’t change by all events in the algorithm
(NO substitution on this variable x := . . .) then a guard which uses only these
variables is preserved. Other can change, we apply a M IF

• With these four attributs we can apply JRA’s rules (down-top)

23

EB2Algo: A guard tree 23

(topI = 0)[final]
(topI 6= 0)[progress; choiceI; progress binf ; progress bsup; swap;

progress singI; computeK1; computeK2; computeK3]

24

EB2Algo: A guard tree 24

(topI = 0) [final]
(topI 6= 0) [progress; choiceI; progress binf ; progress bsup; swap;

progress singI; computeK1; computeK2; computeK3]
(stack(topI − 1) 6= stack(topI)− 1)[progress; choiceI; progress binf ; progress bsup;

swap; computeK1; computeK2; computeK3]
(stack(topI − 1) = stack(topI)− 1)[progress singl]

25

EB2Algo: A guard tree 25

(topI = 0) [final]
(topI 6= 0) [progress; choiceI; progress binf ; progress bsup; swap;

progress singI; computeK1; computeK2; computeK3]
(stack(topI − 1) 6= stack(topI)− 1)[progress; choiceI; progress binf ; progress bsup;

swap; computeK1; computeK2; computeK3]
(boolchI 6= 0)[progress; progress binf ; progress bsup; swap;

computeK1; computeK2; computeK3]
(boolchI = 0)[choiceI]

(stack(topI − 1) = stack(topI)− 1)[progress singl]

26

EB2Algo: A guard tree 26

(topI = 0) [final]
(topI 6= 0) [progress; choiceI; progress binf ; progress bsup; swap;

progress singI; computeK1; computeK2; computeK3]
(stack(topI − 1) 6= stack(topI)− 1)[progress; choiceI; progress binf ; progress bsup;

swap; computeK1; computeK2; computeK3]
(boolchI 6= 0)[progress; progress binf ; progress bsup; swap;

computeK1; computeK2; computeK3]
(boolchI = 0)[choiceI]
¬(binf < bsup)[progress; computeK1; computeK2; computeK3]

(boolk 6= 0)[progress]
(boolk = 0)[computeK1; computeK2; computeK3]
¬(binf = bsup)[computeK1]
(binf = bsup)[computeK2; computeK3]

(g(binf)pv)[computeK2]
¬(g(binf)pv)[computeK3]

(binf < bsup)[progress binf ; progress bsup; swap]
(g(binf) < pv)[progress binf]
¬(g(binf) < pv)[progress bsup; swap]

(g(bsup) > pv)[progress bsup]
¬(g(bsup) > pv)[swap]

(stack(topI − 1) = stack(topI)− 1)[progress singl]

27

EB2Algo: A guard tree 27

(topI = 0) [final]
(topI 6= 0) [progress; choiceI; progress binf ; progress bsup; swap;

progress singI; computeK1; computeK2; computeK3]
(stack(topI − 1) 6= stack(topI)− 1)[progress; choiceI; progress binf ; progress bsup;

swap; computeK1; computeK2; computeK3]
(boolchI 6= 0)[progress; progress binf ; progress bsup; swap;

computeK1; computeK2; computeK3]
(boolchI = 0)[choiceI]
¬(binf < bsup)[progress; computeK1; computeK2; computeK3]

(boolk 6= 0)[progress]
(boolk = 0)[computeK1; computeK2; computeK3]
¬(binf = bsup)[computeK1]
(binf = bsup)[computeK2; computeK3]

(g(binf)pv)[computeK2]
¬(g(binf)pv)[computeK3]

(binf < bsup)[progress binf ; progress bsup; swap]
(g(binf) < pv)[progress binf]
¬(g(binf) < pv)[progress bsup; swap]

(g(bsup) > pv)[progress bsup]
¬(g(bsup) > pv)[swap]

(stack(topI − 1) = stack(topI)− 1)[progress singl]

28

EB2Algo: A guard tree 28

(topI = 0) [final]
(topI 6= 0) [progress; choiceI; progress binf ; progress bsup; swap;

progress singI; computeK1; computeK2; computeK3]
(stack(topI − 1) 6= stack(topI)− 1)[progress; choiceI; progress binf ; progress bsup;

swap; computeK1; computeK2; computeK3]
(boolchI 6= 0)[progress; progress binf ; progress bsup; swap;

computeK1; computeK2; computeK3]
(boolchI = 0)[choiceI]
¬(binf < bsup)[progress; computeK1; computeK2; computeK3]

(boolk 6= 0)[progress]
(boolk = 0)[computeK1; computeK2; computeK3]
¬(binf = bsup)[computeK1]
(binf = bsup)[computeK2; computeK3]

(g(binf)pv)[computeK2]
¬(g(binf)pv)[computeK3]

(binf < bsup)[progress binf ; progress bsup; swap]
(g(binf) < pv)[progress binf]
¬(g(binf) < pv)[progress bsup; swap]

(g(bsup) > pv)[progress bsup]
¬(g(bsup) > pv)[swap]

(stack(topI − 1) = stack(topI)− 1)[progress singl]

29

EB2Algo: A guard tree 29

(topI = 0) [final]
(topI 6= 0) [progress; choiceI; progress binf ; progress bsup; swap;

progress singI; computeK1; computeK2; computeK3]
(stack(topI − 1) 6= stack(topI)− 1)[progress; choiceI; progress binf ; progress bsup;

swap; computeK1; computeK2; computeK3]
(boolchI 6= 0)[progress; progress binf ; progress bsup; swap;

computeK1; computeK2; computeK3]
(boolchI = 0)[choiceI]
¬(binf < bsup)[progress; computeK1; computeK2; computeK3]

(boolk 6= 0)[progress]
(boolk = 0)[computeK1; computeK2; computeK3]
¬(binf = bsup)[computeK1]
(binf = bsup)[computeK2; computeK3]

(g(binf)pv)[computeK2]
¬(g(binf)pv)[computeK3]

(binf < bsup)[progress binf ; progress bsup; swap]
(g(binf) < pv)[progress binf]
¬(g(binf) < pv)[progress bsup; swap]

(g(bsup) > pv)[progress bsup]
¬(g(bsup) > pv)[swap]

(stack(topI − 1) = stack(topI)− 1)[progress singl]

30

EB2Algo: A guard tree 30

INITIALISATION
(topI = 0) [final]
(topI 6= 0) [progress; choiceI; progress binf ; progress bsup; swap;

progress singI; computeK1; computeK2; computeK3]
(stack(topI − 1) 6= stack(topI)− 1)[progress; choiceI; progress binf ; progress bsup;

swap; computeK1; computeK2; computeK3]
(boolchI 6= 0)[progress; progress binf ; progress bsup; swap;

computeK1; computeK2; computeK3]
(boolchI = 0)[choiceI]
¬(binf < bsup)[progress; computeK1; computeK2; computeK3]

(boolk 6= 0)[progress]
(boolk = 0)[computeK1; computeK2; computeK3]
¬(binf = bsup)[computeK1]
(binf = bsup)[computeK2; computeK3]

(g(binf)pv)[computeK2]
¬(g(binf)pv)[computeK3]

(binf < bsup)[progress binf ; progress bsup; swap]
(g(binf) < pv)[progress binf]
¬(g(binf) < pv)[progress bsup; swap]

(g(bsup) > pv)[progress bsup]
¬(g(bsup) > pv)[swap]

(stack(topI − 1) = stack(topI)− 1)[progress singl]

31

Conclusion 31

• EB2Algo was developed by Neeraj under the umbrella of EB2ALL

• EB2Algo works on all JRA’s examples (RED GUARDS are added

using a refinement)

• EB2Algo works on all my EBRP models

• ask Neeraj for a demo

• https://www.irit.fr/EBRP/software

32

