Algorithms correct by construction

à la JRA
using EB2Algo

Dominique Cansell

Neeraj Kumar Singh

June 2024

- JRA proposed many examples of algorithms construction in 2001 with his 2 merges events (algo)
- JRA gave lecture "Analysing and Constructing Computer Programs" from 2014 to 2019
- No many other case study
- No tool to apply JRA's rules except an interactive one but not complete in Shanghai (a student of Li Quin)
- JRA asked me to work again on this topics
- more EBRP algorithms: compute the \boldsymbol{n} first prime numbers (many versions), bubbelsort , Dutch Flag, Better decomposition, quick sort, merge sort.
- instantiation plugin was used for prime numbers (\neg finite (Prime) quicksort (variant), Better decomposition
- After these Rodin developments, I asked Neeraj to develop a tool to produce an algorithm

What do this program

```
P[0]= 0; P[1]= n; t = 1;
for(i=0;i<n;i=i+1) g[i]=f[i];
while (t!=0) {
    if (p[t-1]==p[t]-1){ t=t-1;}
    else {
                a=p[t-1]; b=p [t]-1; c=g[(a+b)/2];
                while (a<b)
            if (g[a]<c) {a=a+1;}
            else if (g[b]>c) {b=b-1;}
            else {v=g[a];g[a]=g[b];g[b]=v;a=a+1;b=b-1;}
if (b<a) {k=b;}
else if (g[a]<=c) {k=b;} else {k=a-1;};
p[t+1]=p[t];
p[t]=k+1;
t=t+1;
}
};
}
```

- It's a sorting program
- at end \boldsymbol{g} contains all values of f but in the order
- a permutation on index of f gives the order
- not easy to see this

It's a sequential version of the famous quicksort

final
any
PI
where

$$
\begin{aligned}
& P I \in 0 . . n-1 \leftrightarrow 0 . . n-1 \\
& \forall i, j . \\
& \quad i \in 0 . . n-1 \wedge j \in i . . n-1 \\
& \quad \Rightarrow f(P I(i)) \leq f(P I(j))
\end{aligned}
$$

then

$$
\underset{\text { end }}{g}:=P I ; f
$$

After seven or eight refinements: 10 events

final
when
$t o p I=0$
end

choicel

when
boolch $I=0$
top $I \neq 0$
stack (topI - 1)
$\neq \operatorname{stack}($ top $I)-1$
then
boolch $I:=1$
$\operatorname{binf}:=\operatorname{stack}(t o p I-1)$
bsup $:=\operatorname{stack}($ topI $)-1$
$p v:=g((\operatorname{stack}(t o p I-1)$ $+\operatorname{stack}(t o p I)-1) / 2)$
end
progress_singl when

$$
\text { top } I \neq 0
$$

$$
\operatorname{stack}(t o p I-1)
$$

$$
=\operatorname{stack}(t o p I)-1
$$

then

top $I:=$ top $I-1$ end
progress_binf when
boolch $I \neq 0$
binf $<$ bsup
$g(b i n f)<p v$
then
$\operatorname{binf}:=\operatorname{binf}+1$
end
progress_bsup
when
boolchI $\neq 0$
binf $<$ sup
$g(\operatorname{bin} f) \geq p v$ $g(b s u p)>p v$
then
bsup $:=$ bsup -1
end

swap

when

$$
\text { boolchI } \neq 0
$$

$\operatorname{binf}<$ bsup
$g(\operatorname{binf}) \geq p v$
$g(b s u p) \leq p v$
then
$g:=g \notin\{\operatorname{binf} \mapsto g($ bsup $)$
, bsup $\mapsto g($ binf $)\}$
$\operatorname{binf}:=\operatorname{binf}+1$
bsup $:=$ bsup -1
end

```
compute_K1
    when
    boolchI # 0
    boolk = 0
    bsup<binf
    then
        K := bsup
        boolk:= 1
    end
```

compute_K2
when

compute_K3 when

boolchI $\neq 0$
boolchI $\neq 0$
boolk = 0
boolk = 0
bsup $=\operatorname{binf}$
bsup $=\operatorname{binf}$ $g(\operatorname{bin} f)>p v$ then
$K:=\operatorname{binf}-1$
boolk $:=1$
end

```
progress
```

 when
 boolk \(\neq 0\) boolchI \(\neq 0\) bsup \(\leq \operatorname{binf}\)
 then
 stack \(:=\) stack \(\notin\{\) top \(I \mapsto K+1\), top \(I+1 \mapsto\) stack \((\) top \(I)\}\)
 boolchI := 0
 topI \(:=\) topI +1
 boolk := 0
 end
 boolch \(I \neq 0 \Rightarrow\) top \(I \neq 0 \wedge \operatorname{stack}(t o p I-1) \neq \operatorname{stack}(t o p I)-1\)
 - At the end of the refinement process we have many small guarded events
- JRA proposed to merge two events (or guarded algorithms) using two merging rules and an additional rule for init.
- when we merge two events we get a guarded algorithm
- some side condition are necessary

Merging Rule M IF

		when	
when	when	P	
P	P	then	
Q	$\neg Q$	if Q then	
then	then	S	M IF
S	T	else	
end	end	T	
		end	

- Side Conditions:
- Both events must have been introduced at the same refinement.
- Special Case: If \boldsymbol{P} is missing the resulting "event" has no guard

- Side Conditions:
- P must be invariant under S
- The first event must have been introduced at one refinement step below the second one.
- Special Case: If \boldsymbol{P} is missing the resulting "event" has no guard
- when P is not invariant under S (or if you cannot prove P) JRA said always use the M IF rule.
- level of the merge event: it's the less one if the abstract one is the small one
- rules defined in 2001 before anticipated events (2005) then I have corrected a little level definition.
- convergent level = level where the event is convergent convlevel(evt)
- definition level = level where the event is defined defevel(evt)
- level(evt)=convlevel(evt) \mapsto defevel(evt)
- lexicographies order
- progress is defined and convergent at level 1, swap is defined at level $0(g:=)$ and convergent at level 2

compute_K2 when
boolch $I \neq 0$
boolk $=0$
bsup $=\operatorname{binf}$ $g(b i n f) \leq p v$ then
$K:=b s u p$
boolk := 1
end
compute_K3
when
boolch $I \neq 0$
boolk $=0$
bsup $=\operatorname{binf}$ $g(b i n f)>p v$
then
$K:=\operatorname{binf}-1$
boolk := 1
end

compute_K2 when

$$
\text { boolchI } \neq 0
$$

$$
\text { boolk }=0
$$

$$
\text { bsup }=\operatorname{binf}
$$

$$
\text { bsup } \leq \operatorname{binf}
$$

$$
g(b i n \bar{f}) \leq p v
$$

then
$K:=b s u p$
boolk $:=1$
end
compute_K3
when
boolchI $\neq 0$
boolk $=0$
bsup $=\operatorname{binf}$
bsup $\leq \operatorname{binf}$
$\boldsymbol{g}(\boldsymbol{b i n f})>\boldsymbol{p} \boldsymbol{v}$
then
$K:=\operatorname{binf}-1$
boolk $:=1$
end
compute_K2_K3 when
boolchI $\neq 0$
boolk = 0
bsup $\leq \operatorname{binf}$
bsup $=\operatorname{binf}$
then
if $g(\operatorname{bin} f) \leq p v$ then $K:=b s u p$ boolk :=1
else
$K:=\operatorname{binf}-1$
boolk := 1
end
end

```
compute_K1_K2_K3
    when
    boolchI \(\neq 0 \quad\) bsup \(\leq \operatorname{binf}\) boolk \(=0\)
    then
    if \(\operatorname{bsup}<\operatorname{binf}\) then
        \(K:=b s u p\)
        boolk := 1
    else
        if \(g(\operatorname{bin} f) \leq p v\) then
            \(K:=\) bsup || boolk \(:=1\)
        else
        \(K:=\operatorname{binf}-1| |\) boolk \(:=1\)
        end
    end
    end
```

```
compute_K1_K2_K3_progress
    when
        boolchI\not=0 bsup \leq binf
    then
        while boolk = 0 do
        if bsup<binf thenK := bsup| boolk := 1
        else if g(binf) \leqpv thenK := bsup|boolk :=1
                        elseK := binf - 1|boolk :=1
                        end
        end
    end;
    stack := stack &{topI\mapstoK + 1,topI + 1\mapsto stack(topI)}
    boolchI := 0
    topI := topI + 1
    end
```

A while with one turn in the loop ! boolk can disapear.

```
compute_K1_K2_K3_progress
```

 when
 boolchI \(\neq 0\) bsup \(\leq \operatorname{binf}\)
 then
 if bsup \(<\) binf then \(K:=\) bsup
 else if \(g(b i n f) \leq p v\) then \(K:=b s u p\)
 else \(K:=\operatorname{binf}-1\)
 end
 end ;
 stack \(:=\) stack \(\nleftarrow\{\) top \(I \mapsto K+1\), topI \(+1 \mapsto\) stack \((\) topI \()\}\)
 boolchI \(:=0\)
 top \(I:=t o p I+1\)
 end
 - Neeraj's constraints: the tool need to be automatic. No interaction. No proof obligations can be generated
- I proposed to compute a guard tree
- guards need to be completed (RED GUARDS)
- the tool try to split a subset of events in two non empty subsets using a guard G.
- one subset with all events using G as guard and the other one using $\neg G$ as guard. Both subsets are splited using the same algorithm (recursive) without guards G and $\neg G$. All events are in the union of both subset (partition).
- when there is only one event all guards of this event are consumed.
- It's a backtracking algorithm but G is not choiced arbitrary. We take a guard inside an event which has the minimum number of guard (less tentatives). If G doesn't work we choice the next guard of the event.
- if the split abord using all guard of the event: A guard misses or there is a deadlock. It's the difficult part for a beginner.

Applying JRA's rules

On the guard tree we compute

- the subset of events
- A level: it's the minimum of all events levels of the subset. then we can decide to apply M_IF or perhaps M_WHILE
- the set of guards (above) which are preserved by all events in the subset (for a while)
- With these three attributs we can apply JRA's rules (down-top)

Applying JRA's rules

On the guard tree we compute

- the subset of events
- A level: it's the minimum of all events levels of the subset. then we can decide to apply M_IF or perhaps M_WHILE
- We compute the variables which doesn't change by all events in the algorithm (NO substitution on this variable $x:=\ldots$) then a guard which uses only these variables is preserved. Other can change, we apply a M_IF
- With these four attributs we can apply JRA's rules (down-top)

EB2Algo: A guard tree

$(t o p I=0)[$ final $]$
(topI $\neq 0)[$ progress; choiceI; progress_binf; progress_bsup; swap; progress_singI; computeK1; computeK2; compute $K 3$]

EB2Algo: A guard tree

```
(top \(I=0\) ) [final]
\((\) topI \(\neq 0)\) [progress; choiceI; progress_binf;progress_bsup; swap;
    progress_singI; computeK1; computeK2; compute \(K 3\) ]
    (stack \((\) top \(I-1) \neq \operatorname{stack}(t o p I)-1)[\) progress; choiceI; progress_binf; progress_bsup;
        swap; computeK1; computeK2; computeK3]
    \((\operatorname{stack}(\) top \(I-1)=\operatorname{stack}(t o p I)-1)[\) progress_singl]
```


EB2Algo: A guard tree

```
\((\) top \(I=0)[\) final \(]\)
(topI \(\neq 0\) ) [progress; choiceI; progress_binf; progress_bsup; swap;
    progress_singI; computeK1; computeK2; computeK3]
```



```
                                    swap; computeK1; computeK2; computeK3]
        (boolchI \(\neq 0)[\) progress; progress_binf; progress_bsup; swap;
        computeK1; computeK2; computeK3]
        \((\) boolch \(I=0)[\) choice \(I]\)
    \((\operatorname{stack}(t o p I-1)=\operatorname{stack}(t o p I)-1)\left[p r o g r e s s \_s i n g l\right]\)
```


EB2Algo: A guard tree

```
(topI = 0) [final]
(topI = 0) [progress;choiceI; progress_binf;progress_bsup; swap;
        progress_singI; computeK1; computeK2; computeK3]
    (stack(topI - 1) = stack(topI) - 1)[progress;choiceI; progress_binf;progress_bsup;
                        swap; computeK1; computeK2; computeK3]
    (boolchI }\not=0)[progress;progress_binf;progress_bsup; swap;
        computeK1; computeK2; computeK3]
    (boolchI = 0)[choiceI]
    \neg(binf < bsup)[progress; computeK1; computeK2; computeK3]
            (boolk}\not=0)[progress
            (boolk = 0)[computeK1; computeK2; computeK3]
                \neg ( b i n f = b s u p ) [ c o m p u t e K 1 ] ~
                        (binf = bsup)[computeK2; computeK3]
                        (g(binf)pv)[computeK2]
                        \neg(g(binf)pv)[computeK3]
        (binf < bsup)[progress_binf;progress_bsup; swap]
        (g(binf)<pv)[progress_binf]
        \neg ( g ( b i n f ) < p v ) [ p r o g r e s s \_ b s u p ; ~ s w a p ] ~ ]
            (g(bsup)>pv)[progress_bsup]
            \neg(g(bsup)>pv)[swap]
    (stack(topI - 1) = stack(topI) - 1)[progress_singl]
```


EB2Algo: A guard tree

```
(topI = 0) [final]
(topI = 0) [progress;choiceI; progress_binf;progress_bsup; swap;
        progress_singI; computeK1; computeK2; computeK3]
    (stack(topI - 1) = stack(topI) - 1)[progress; choiceI; progress_binf;progress_bsup;
                        swap; computeK1; computeK2; computeK3]
    (boolchI }\not=0)[progress;progress_binf;progress_bsup; swap;
        computeK1; computeK2; computeK3]
    (boolchI = 0)[choiceI]
    \neg ( b i n f ~ < ~ b s u p ) [ p r o g r e s s ; ~ c o m p u t e K 1 ; ~ c o m p u t e K 2 ; ~ c o m p u t e K 3 ] ~
        (boolk}\not=0)[progress
        (boolk = 0)[computeK1; computeK2; computeK3]
        \neg ( b i n f = b s u p ) [ c o m p u t e K 1 ] ~
        (binf = bsup)[computeK2; computeK3]
                        (g(binf)pv)[computeK2]
                        \neg(g(binf)pv)[computeK3]
        (binf < bsup)[progress_binf;progress_bsup; swap]
        (g(binf)<pv)[progress_binf]
        \neg ( g ( b i n f ) < p v ) [ p r o g r e s s \_ b s u p ; ~ s w a p ]
            (g(bsup)>pv)[progress_bsup]
            \neg(g(bsup)>pv)[swap]
    (stack(topI - 1) = stack(topI) - 1)[progress_singl]
```


EB2Algo: A guard tree

```
(topI = 0) [final]
(topI = 0) [progress;choiceI; progress_binf;progress_bsup; swap;
        progress_singI; computeK1; computeK2; computeK3]
    (stack(topI - 1) = stack(topI) - 1)[progress;choiceI; progress_binf;progress_bsup;
                        swap; computeK1; computeK2; computeK3]
    (boolchI }\not=0)[progress;progress_binf;progress_bsup; swap;
        computeK1; computeK2; computeK3]
    (boolchI = 0)[choiceI]
    \neg(binf < bsup)[progress; computeK1; computeK2; computeK3]
        (boolk}\not=0)[progress
        (boolk =0)[computeK1; computeK2; computeK3]
        \neg ( b i n f ~ = ~ b s u p ) [ c o m p u t e K 1 ] ~
        (binf = bsup)[computeK2;computeK3]
                        (g(binf)pv)[computeK2]
                        \neg(g(binf)pv)[computeK3]
        (binf < bsup)[progress_binf;progress_bsup; swap]
        (g(binf)<pv)[progress_binf]
        \neg(g(binf) < pv)[progress_bsup; swap]
            (g(bsup)>pv)[progress_bsup]
            \neg(g(bsup)>pv)[swap]
    (stack(topI - 1) = stack(topI) - 1)[progress_singl]
```


EB2Algo: A guard tree

```
(topI = 0) [final]
(topI = 0) [progress;choiceI; progress_binf;progress_bsup; swap;
        progress_singI; computeK1; computeK2; computeK3]
    (stack(topI - 1) = stack(topI) - 1)[progress;choiceI; progress_binf;progress_bsup;
                        swap; computeK1; computeK2; computeK3]
    (boolchI }\not=0)[progress;progress_binf;progress_bsup; swap;
        computeK1; computeK2; computeK3]
    (boolchI = 0)[choiceI]
    \neg(binf < bsup)[progress; computeK1; computeK2; computeK3]
        (boolk}\not=0)[progress
        (boolk = 0)[computeK1; computeK2; computeK3]
        \neg ( b i n f = b s u p ) [ c o m p u t e K 1 ] ~
        (binf = bsup)[computeK2; computeK3]
                        (g(binf)pv)[computeK2]
                        \neg ( g ( b i n f ) p v ) [ c o m p u t e K 3 ] ~
        (binf < bsup)[progress_binf;progress_bsup; swap]
        (g(binf)<pv)[progress_binf]
        \neg ( g ( b i n f ) < p v ) [ p r o g r e s s \_ b s u p ; ~ s w a p ]
            (g(bsup)>pv)[progress_bsup]
            \neg(g(bsup)>pv)[swap]
    (stack(topI - 1) = stack(topI) - 1)[progress_singl]
```

```
INITIALISATION
(topI=0) [final]
(topI = 0) [progress;choiceI;progress_binf;progress_bsup; swap;
    progress_singI; computeK1; computeK2; computeK3]
    (stack(topI - 1) = stack(topI) - 1)[progress;choiceI; progress_binf;progress_bsup;
                        swap; computeK1; computeK2; computeK3]
        (boolchI #= 0)[progress; progress_binf;progress_bsup; swap;
            computeK1; computeK2; computeK3]
        (boolchI = 0)[choiceI]
            \neg(binf < bsup)[progress; computeK1; computeK2; computeK3]
            (boolk }=0)[\mathrm{ [progress]
            (boolk =0)[computeK1; computeK2; computeK3]
                \neg ( \text { binf = bsup)[computeK1]}
                (binf = bsup)[computeK2; computeK3]
                    (g(binf)pv)[computeK2]
                        \neg ( g ( b i n f ) p v ) [ c o m p u t e K 3 ] ~
        (binf < bsup)[progress_binf;progress_bsup; swap]
            (g(binf)<pv)[progress_binf]
            \neg(g(binf) < pv)[progress_bsup; swap]
            (g(bsup) > pv)[progress_bsup]
            \neg(g(bsup)>pv)[swap]
    (stack (topI - 1) = stack (topI) - 1)[progress_singl]
```

- EB2Algo was developed by Neeraj under the umbrella of EB2ALL
- EB2Algo works on all JRA's examples (RED GUARDS are added using a refinement)
- EB2Algo works on all my EBRP models
- ask Neeraj for a demo
- https://www.irit.fr/EBRP/software

