Schemata of Recursive Functions and Iterative Algorithms

Dominique Cansell (Lessy, EBRP)

1 Description

In [2] we presented the new JRA's instantiation context to define closure, fixpoint (Tarski), well-founded (Noether) and recursion. A new instantiation plugin [4] was developed in the EBRP project [5]. In this paper we describe an instantiation of an eventB development using JRA's instantiation context. We use terminal (as well non-terminal) recursive function and we recall some theorems on closure and recursion. Rodin [6] is used to develop and prove all models describe in this paper.

2 Theorems between Closure an Well-founded Relation

Let r be a relation $(r \in S \leftrightarrow S)$ then its transitive closure is defined by a fixpoint and

- if r is well-founded then $\operatorname{closure}(r)$ is also well-founded and $\forall x \cdot x \in S \Rightarrow x \notin \operatorname{closure}\left(r^{-1}\right)[\{x\}]$
- if r is well-founded and $r^{-1} \in S \rightarrow S$ then finite $\left(\right.$ closure $\left.\left(r^{-1}\right)[\{x\}]\right)$

3 Well-founded Relation and Fixpoint: Recursion

Recursive functions are defined with a well-founded relation and the fixpoint theorem.

- Let r be a well-founded relation on $S: \quad r \in S \leftrightarrow S$
- Let g be a a function such that: $\quad g \in(S \times(S \rightarrow T)) \rightarrow T$
- There is a unique total function $f r: \quad f r \in S \rightarrow T$
such that we have: $\forall x \cdot x \in S \Rightarrow f r(x)=g\left(x \mapsto r^{-1}[\{x\}] \triangleleft f r\right)$
- The value of $f r$ at x depends on its value on the set $r^{-1}[\{x\}], F r S B$ is a function (an operator) which gives the recursive fonction $f r: f r=\operatorname{FrSB}(r \mapsto g)$

Many recursive functions have only one recursive call then $r^{-1}[\{x\}]$ is empty (base case) or a singleton then r^{-1} is a function. In this case we define the function (operator) $\operatorname{FrsB1}$ where $\operatorname{FrSB1}(r \mapsto f 0 \mapsto$ $f)=\operatorname{FrSB}(r \mapsto g)$ and $g=\left\{x, h, b \cdot x \in S \wedge h \in S \rightarrow B \wedge r^{-1}[\{x\}] \subseteq \operatorname{dom}(h) \wedge(x \notin \operatorname{ran}(r) \Rightarrow b=\right.$ $\left.f 0(x)) \wedge\left(x \in \operatorname{ran}(r) \Rightarrow b=f\left(x \mapsto h\left(r^{-1}(x)\right)\right)\right) \mid x \mapsto h \mapsto b\right\}$ in this case we have $\forall x \cdot x \in S \wedge x \notin$ $\operatorname{ran}(r) \Rightarrow f r(x)=f 0(x) \quad$ and $\forall x \cdot x \in S \wedge x \in \operatorname{ran}(r) \Rightarrow f r(x)=f\left(x \mapsto f r\left(r^{-1}(x)\right)\right)$

4 Terminal recursion

A function $f r$ is terminal recursive if $f r=\operatorname{FrSB1}(r \mapsto f 0 \mapsto f)$ and $f(x \mapsto y)=y$ then we have $\forall x \cdot x \in S \wedge x \in \operatorname{ran}(r) \Rightarrow f r(x)=f r\left(r^{-1}(x)\right)$. The function (operator) FrsB1Ter gives the function : $f r=\operatorname{FrSB1Ter}(r \mapsto f 0)$.

4.1 An abstract machine

Let $f r$ equals $\operatorname{FrSB1Ter}(r \mapsto f 0)$ and $x \in S$, a variable R, an event which computes $f r(x)$ in one shot

$$
\text { final }=\text { then } R:=f r(x) \text { end }
$$

4.2 A refinement

Let y be a variable initialised to x with the invariant $f r(x)=f r(y)$

$$
\text { final }=\text { when } y \notin \operatorname{ran}(r) \text { then } R:=f 0(y) \text { end }
$$

$$
\text { progress }=\text { when } y \in \operatorname{ran}(r) \text { then } y:=r^{-1}(y) \text { end }
$$

The variant is trivially closure $\left(r^{-1}\right)[\{y\}]$ then progress cannot take the control forever.

4.3 An algorithm

Using JRA's merging rules [1] we obtain the following algorithm:

$$
y:=x ; \text { while } y \in \operatorname{ran}(r) \text { do } y:=r^{-1}(y) \text { od } ; R:=f 0(y)
$$

4.4 An example: gcd with mod

Xavier Leroy uses this gcd example in [3] and explains how well-founded relations are important in order to define recursive function. We can define $g c d m o d$ with the following definition:
$g c d m o d=\operatorname{FrSB1Ter}(\{a, b \cdot b>0 \wedge a>b \mid(b \mapsto a \bmod b) \mapsto(a \mapsto b)\} \mapsto(\lambda x \mapsto y \cdot x>y \wedge y \geq 0 \mid x))$
After proving that the relation is well-founded we got for free: $\forall a \cdot a>0 \Rightarrow \operatorname{gcdmod}(a \mapsto 0)=a$ and $\forall a, b \cdot a>b \wedge b>0 \Rightarrow \operatorname{gcdmod}(a \mapsto b)=\operatorname{gcdmod}(b \mapsto(a \bmod b))$

5 Conclusion

If we correctly instantiate S, r and $f 0$ in the corresponding context and if we prove the instantiation PO (r is well-founded and its inverse is a function) the instantiation of the algorithm gives for free the instantiated and correct algorithm.

We have similar schemata for non-terminal recursion (with or without stack) and sorted algorithms.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University Press, 2010
2. D. Cansell, J.-R. Abrial: Examples of using the Instantiation Plug-in", Rodin Workshop 2021
3. Xavier Leroy. Well-founded recursion done right. CoqPL 2024
4. G. Verdier and L. Voisin Context instantiation plug-in: a new approach to genericity in Rodin., Rodin Workshop 2021
5. EBRP Enhancing EventB and Rodin. https://irit.fr/EBRP
6. Rodin Platform. http://www.event-b.org
