
Schemata of Recursive Functions and Iterative Algorithms

Dominique Cansell (Lessy, EBRP)

1 Description

In [2] we presented the new JRA’s instantiation context to define closure, fixpoint (Tarski), well-founded
(Noether) and recursion. A new instantiation plugin [4] was developed in the EBRP project [5]. In this paper
we describe an instantiation of an eventB development using JRA’s instantiation context. We use terminal
(as well non-terminal) recursive function and we recall some theorems on closure and recursion. Rodin [6]
is used to develop and prove all models describe in this paper.

2 Theorems between Closure an Well-founded Relation

Let r be a relation (r ∈ S ↔ S) then its transitive closure is defined by a fixpoint and

– if r is well-founded then closure(r) is also well-founded and ∀x · x ∈ S⇒ x /∈ closure(r−1)[{x}]
– if r is well-founded and r−1 ∈ S 7→ S then finite(closure(r−1)[{x}])

3 Well-founded Relation and Fixpoint: Recursion

Recursive functions are defined with a well-founded relation and the fixpoint theorem.
- Let r be a well-founded relation on S: r ∈ S↔ S
- Let g be a a function such that: g ∈ (S × (S 7→ T))→ T
- There is a unique total function fr: fr ∈ S→ T

such that we have: ∀x · x ∈ S ⇒ fr(x) = g(x 7→ r−1[{x}] � fr)
- The value of fr at x depends on its value on the set r−1[{x}], FrSB is a function (an operator) which

gives the recursive fonction fr: fr = FrSB(r 7→ g)
Many recursive functions have only one recursive call then r−1[{x}] is empty (base case) or a singleton

then r−1 is a function. In this case we define the function (operator) FrsB1 where FrSB1(r 7→ f0 7→
f) = FrSB(r 7→ g) and g = {x, h, b · x ∈ S ∧ h ∈ S 7→ B ∧ r−1[{x}] ⊆ dom(h) ∧ (x /∈ ran(r)⇒ b =
f0(x)) ∧ (x ∈ ran(r)⇒ b = f(x 7→ h(r−1(x)))) | x 7→ h 7→ b} in this case we have ∀x · x ∈ S ∧ x /∈
ran(r) ⇒ fr(x) = f0(x) and ∀x · x ∈ S ∧ x ∈ ran(r) ⇒ fr(x) = f(x 7→ fr(r−1(x)))

4 Terminal recursion

A function fr is terminal recursive if fr = FrSB1(r 7→ f0 7→ f) and f(x 7→ y) = y then we have
∀x · x ∈ S ∧ x ∈ ran(r) ⇒ fr(x) = fr(r−1(x)). The function (operator) FrsB1Ter gives the function :
fr = FrSB1Ter(r 7→ f0) .

4.1 An abstract machine

Let fr equals FrSB1Ter(r 7→ f0) and x ∈ S, a variable R , an event which computes fr(x) in one shot

final = then R := fr(x) end

4.2 A refinement

Let y be a variable initialised to x with the invariant fr(x) = fr(y)

final = when y /∈ ran(r) then R := f0(y) end

progress = when y ∈ ran(r) then y := r−1(y) end

The variant is trivially closure(r−1)[{y}] then progress cannot take the control forever.

4.3 An algorithm

Using JRA’s merging rules [1] we obtain the following algorithm:

y := x; while y ∈ ran(r) do y := r−1(y) od; R := f0(y)

4.4 An example: gcd with mod

Xavier Leroy uses this gcd example in [3] and explains how well-founded relations are important in order to
define recursive function. We can define gcdmod with the following definition:
gcdmod = FrSB1Ter({a, b·b > 0∧a > b|(b 7→ a mod b) 7→ (a 7→ b)} 7→ (λx 7→ y ·x > y∧y ≥ 0 | x))

After proving that the relation is well-founded we got for free: ∀a · a > 0 ⇒ gcdmod(a 7→ 0) = a and
∀a, b · a > b ∧ b > 0 ⇒ gcdmod(a 7→ b) = gcdmod(b 7→ (a mod b))

5 Conclusion

If we correctly instantiate S, r and f0 in the corresponding context and if we prove the instantiation PO (r
is well-founded and its inverse is a function) the instantiation of the algorithm gives for free the instantiated
and correct algorithm.

We have similar schemata for non-terminal recursion (with or without stack) and sorted algorithms.

References
1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University Press, 2010
2. D. Cansell, J.-R. Abrial: Examples of using the Instantiation Plug-in”, Rodin Workshop 2021
3. Xavier Leroy. Well-founded recursion done right. CoqPL 2024
4. G. Verdier and L. Voisin Context instantiation plug-in: a new approach to genericity in Rodin., Rodin Workshop

2021
5. EBRP Enhancing EventB and Rodin. https://irit.fr/EBRP
6. Rodin Platform. http://www.event-b.org

2

