Schemata of Recursive Functions and Iterative Algorithms

Dominique Cansell (Lessy, EBRP)

1 Description

In [2] we presented the new JRA's instantiation context to define closure, fixpoint (Tarski), well-founded (Noether) and recursion. A new instantiation plugin [4] was developed in the EBRP project [5]. In this paper we describe an instantiation of an eventB development using JRA's instantiation context. We use terminal (as well non-terminal) recursive function and we recall some theorems on closure and recursion. Rodin [6] is used to develop and prove all models describe in this paper.

2 Theorems between Closure an Well-founded Relation

Let r be a relation $(r \in S \leftrightarrow S)$ then its transitive closure is defined by a fixpoint and

- if r is well-founded then closure(r) is also well-founded and $\forall x \cdot x \in S \Rightarrow x \notin closure(r^{-1})[\{x\}]$
- if r is well-founded and $r^{-1} \in S \rightarrow S$ then $finite(closure(r^{-1})[\{x\}])$

3 Well-founded Relation and Fixpoint: Recursion

Recursive functions are defined with a well-founded relation and the fixpoint theorem.

- Let r be a well-founded relation on S: $r \in S \leftrightarrow S$
- Let g be a a function such that: $g \in (S \times (S \rightarrow T)) \rightarrow T$
- There is a unique total function $fr: fr \in S \to T$

such that we have: $\forall x \cdot x \in S \Rightarrow fr(x) = g(x \mapsto r^{-1}[\{x\}] \triangleleft fr)$

- The value of fr at x depends on its value on the set $r^{-1}[\{x\}]$, FrSB is a function (an operator) which gives the recursive fonction $fr: fr = FrSB(r \mapsto g)$

Many recursive functions have only one recursive call then $r^{-1}[\{x\}]$ is empty (base case) or a singleton then r^{-1} is a function. In this case we define the function (operator) FrsB1 where $FrSB1(r \mapsto f0 \mapsto f) = FrSB(r \mapsto g)$ and $g = \{x, h, b \cdot x \in S \land h \in S \Rightarrow B \land r^{-1}[\{x\}] \subseteq dom(h) \land (x \notin ran(r) \Rightarrow b = f0(x)) \land (x \in ran(r) \Rightarrow b = f(x \mapsto h(r^{-1}(x)))) \mid x \mapsto h \mapsto b\}$ in this case we have $\forall x \cdot x \in S \land x \notin ran(r) \Rightarrow fr(x) = f0(x)$ and $\forall x \cdot x \in S \land x \in ran(r) \Rightarrow fr(x) = f(x \mapsto fr(r^{-1}(x)))$

4 Terminal recursion

A function fr is terminal recursive if $fr = FrSB1(r \mapsto f0 \mapsto f)$ and $f(x \mapsto y) = y$ then we have $\forall x \cdot x \in S \land x \in ran(r) \Rightarrow fr(x) = fr(r^{-1}(x))$. The function (operator) FrsB1Ter gives the function : $fr = FrSB1Ter(r \mapsto f0)$.

4.1 An abstract machine

Let fr equals $FrSB1Ter(r \mapsto f0)$ and $x \in S$, a variable R, an event which computes fr(x) in one shot

final = then
$$R := fr(x)$$
 end

4.2 A refinement

Let y be a variable initialised to x with the invariant fr(x) = fr(y)

final = when $y \notin ran(r)$ then R := f0(y) end progress = when $y \in ran(r)$ then $y := r^{-1}(y)$ end

The variant is trivially $closure(r^{-1})[\{y\}]$ then progress cannot take the control forever.

4.3 An algorithm

Using JRA's merging rules [1] we obtain the following algorithm:

y := x; while $y \in ran(r)$ do $y := r^{-1}(y)$ od; R := f0(y)

4.4 An example: gcd with mod

Xavier Leroy uses this gcd example in [3] and explains how well-founded relations are important in order to define recursive function. We can define *gcdmod* with the following definition:

 $gcdmod = FrSB1Ter(\{a, b \cdot b > 0 \land a > b | (b \mapsto a \mod b) \mapsto (a \mapsto b)\} \mapsto (\lambda x \mapsto y \cdot x > y \land y \ge 0 \mid x))$ After proving that the relation is well-founded we got for free: $\forall a \cdot a > 0 \Rightarrow gcdmod(a \mapsto 0) = a$ and $\forall a, b \cdot a > b \land b > 0 \Rightarrow gcdmod(a \mapsto b) = gcdmod(b \mapsto (a \mod b))$

5 Conclusion

If we correctly instantiate S, r and f0 in the corresponding context and if we prove the instantiation PO (r is well-founded and its inverse is a function) the instantiation of the algorithm gives for free the instantiated and correct algorithm.

We have similar schemata for non-terminal recursion (with or without stack) and sorted algorithms.

References

- 1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University Press, 2010
- 2. D. Cansell, J.-R. Abrial: Examples of using the Instantiation Plug-in", Rodin Workshop 2021
- 3. Xavier Leroy. Well-founded recursion done right. CoqPL 2024
- 4. G. Verdier and L. Voisin *Context instantiation plug-in: a new approach to genericity in Rodin.*, Rodin Workshop 2021
- 5. EBRP Enhancing EventB and Rodin. https://irit.fr/EBRP
- 6. Rodin Platform. http://www.event-b.org