Schemata of Recursive Functions and Iterative Algorithms

Dominique Cansell (Lessy, EBRP)

dominique.cansell@gmail.com

June 2024

- JRA proposed a new instantiation context in 2020
- A tool was developed in the EBRP project (L. Voisin, G. Verdier)
- No machine instantiation (for the moment)
- Explanation on recursive functions
- I used recursive schemata to teach recursion (1990-2000)

Principle very simple

- A machine can see a context
- If we instantiate a context we can have the instantiated machine for free
- Let be a context which defines a total order on a set V
- Let be a refinement chain of a sort algorithm. The last one can be transform to an algorithm.
- If you instantiate the context with a concrete relation. If you prove (Instantiated $\mathrm{PO})$ that the relation is a total order. You can have an sort algorithm for free.

Theorems between Closure an Well-founded Relation

Let r be a relation $(r \in S \leftrightarrow S)$ then its transitive closure is defined by a fixpoint and

- if r is well-founded then $\operatorname{closure}(r)$ is also well-founded and $\forall x \cdot x \in S \Rightarrow x \notin \operatorname{closure}\left(r^{-1}\right)[\{x\}]$
- if r is well-founded and $r^{-1} \in S \rightarrow S$ then finite $\left.\left(\operatorname{closure}\left(r^{-1}\right)[\{x\}]\right)\right)$

Recursive functions are defined with a well-founded relation and the fixpoint theorem.

- Let r be a well-founded relation on $S: \quad r \in S \leftrightarrow S$
- Let g be a function such that: $\quad g \in(S \times(S \rightarrow T)) \rightarrow T$
- There is a unique total function $f r: \quad f r \in S \rightarrow T$ such that we have:

$$
\forall x \cdot x \in S \Rightarrow f r(x)=g\left(x \mapsto r^{-1}[\{x\}] \triangleleft f r\right)
$$

More on $g: \forall x, h \cdot x \mapsto h \in \operatorname{dom}(g) \Rightarrow r^{-1}[\{x\}] \subseteq \operatorname{dom}(h)$

- The value of $f r$ at x depends on its values on the set $r^{-1}[\{x\}]$, $\boldsymbol{F r S B}$ is a function (an operator) which gives the recursive fonction $f r$:

$$
f r=F r S B(r \mapsto g)
$$

Thanks to WD PO when we use $\operatorname{Fr} \boldsymbol{S B} \boldsymbol{B}(\boldsymbol{R} \mapsto \boldsymbol{G}) \boldsymbol{R}$ must be a well-founded relation and G a function

FrSB means recursive Function (from) S (to) B

Many recursive functions have only one recursive call then $r^{-1}[\{x\}]$ is empty (base case) or a singleton then r^{-1} is a function. In this case we define the function (operator) $\operatorname{FrSB1}$ where
$\operatorname{FrSB1}(r \mapsto f 0 \mapsto f)=F r S B(r \mapsto g)$ and
$g=\left\{x, h, b \cdot x \in S \wedge h \in S \rightarrow B \wedge r^{-1}[\{x\}] \subseteq \operatorname{dom}(h) \wedge\right.$

$$
\begin{aligned}
& (x \notin \operatorname{ran}(r) \Rightarrow b=f 0(x)) \wedge \\
& \left(x \in \operatorname{ran}(r) \Rightarrow b=f\left(x \mapsto h\left(r^{-1}(x)\right)\right)\right) \\
& \qquad x \mapsto h \mapsto b\}
\end{aligned}
$$

in this case we have the following THEOREMS
$\forall x \cdot x \in S \wedge x \notin \operatorname{ran}(r) \Rightarrow f r(x)=f 0(x)$ and
$\forall x \cdot x \in S \wedge x \in \operatorname{ran}(r) \Rightarrow f r(x)=f\left(x \mapsto f r\left(r^{-1}(x)\right)\right)$

More classical

A function $f r$ is terminal recursive if

$$
f r=F r S B 1(r \mapsto f 0 \mapsto f) \text { and } f(x \mapsto y)=y
$$

then we have
$\forall x \cdot x \in S \wedge x \in \operatorname{ran}(r) \Rightarrow f r(x)=f r\left(r^{-1}(x)\right)$

The function (operator) $\boldsymbol{F r S B 1 T e r}$ gives the function:
$f r=F r S B 1 T e r(r \mapsto f 0)$.

Let $f r$ equals $\operatorname{FrSB1Ter}(r \mapsto f 0)$ and $x \in S$, a variable R, an event which computes $\boldsymbol{f r}(\boldsymbol{x})$ in one shot

```
final }=\mathrm{ then R:=fr(x) end
```

Let y be a variable initialised to x with the invariant $\operatorname{fr}(x)=f r(y)$ final $=$ when $y \notin \operatorname{ran}(r)$ then $R:=f 0(y)$ end

$$
\text { progress }=\text { when } y \in \operatorname{ran}(r) \text { then } y:=r^{-1}(y) \text { end }
$$

The invariant is: $y \in S \wedge f r(x)=f r(y)$

The variant is trivially closure $\left(r^{-1}\right)[\{y\}]$ then progress cannot take the control forever.

An algorithm

Using JRA's merging rules we obtain the following algorithm:

$$
\begin{aligned}
& y:=x ; \\
& \text { while } y \in \operatorname{ran}(r) \text { do } \\
& y:=r^{-1}(y) \\
& \text { od; } \\
& R:=f 0(y)
\end{aligned}
$$

We can define $\boldsymbol{g c d m o d}$ with the following definition:
gcdmod
$\operatorname{FrSB1Ter}(\{a, b \cdot b>0 \wedge a>b \mid$

$$
\begin{aligned}
& (b \mapsto a \bmod b) \mapsto(a \mapsto b)\} \\
& \mapsto(\lambda x \mapsto y \cdot x>y \wedge y \geq 0 \mid x))
\end{aligned}
$$

After proving that the relation is well-founded we got for free:
$\forall a \cdot a>0 \Rightarrow \operatorname{gcdmod}(a \mapsto 0)=a$ and
$\forall a, b \cdot a>b \wedge b>0$
$\Rightarrow \operatorname{gcdmod}(a \mapsto b)=\operatorname{gcdmod}(b \mapsto(a \bmod b))$

A refinement for free

Let $\boldsymbol{y a}, \boldsymbol{y} \boldsymbol{b}$ be variable initialised to $\boldsymbol{x} \boldsymbol{a}$ and $\boldsymbol{x} \boldsymbol{b}$

```
final =
    when
        ya\mapstoyb\not\in\operatorname{ran}({a,b\cdotb>0\wedgea>b|(b\mapstoammod b)\mapsto(a\mapstob)})
    then
        R:=(\lambdax\mapstoy\cdotx>y^y\geq0|x)(ya\mapstoyb))
    end
```

```
progress =
    when
    ya\mapstoyb\inran({a,b\cdotb>0^a>b|(b\mapstoamod}b)\mapsto(a\mapstob)}
    then
        ya\mapstoyb:={a,b\cdotb>0^a>b|(b\mapstoa\operatorname{mod}b)\mapsto(a\mapstob)}-1}(ya\mapstoyb
    end
```

with the invariant
$y a \mapsto y b \in\{a \mapsto b \mid a>b \wedge b \leq 0\} \wedge \operatorname{gcdmod}(x a \mapsto x b)=\operatorname{gcdmod}(y a \mapsto y b)$
The variant: closure $\left(\{a, b \cdot b>0 \wedge a>b \mid(b \mapsto a \bmod b) \mapsto(a \mapsto b)\}^{-1}\right)[\{y a \mapsto y b\}]$

A refinement for free

Let $\boldsymbol{y a}, \boldsymbol{y} \boldsymbol{b}$ be variable initialised to $\boldsymbol{x} \boldsymbol{a}$ and $\boldsymbol{x} \boldsymbol{b}$

```
final =
    when
        ya\mapstoyb\not\in\operatorname{ran}({a,b\cdotb>0\wedgea>b|(b\mapstoammod b)\mapsto(a\mapstob)})
    then
        R:=(\lambdax\mapstoy\cdotx>y^y\geq0|x)(ya\mapstoyb))
    end
```

```
progress =
    when
        ya\mapstoyb\inran({a,b\cdotb>0^a>b|(b\mapstoammod}b)\mapsto(a\mapstob)}
    then
    ya\mapstoyb:={a,b\cdotb>0^a>b|(b\mapstoa\operatorname{mod}b)\mapsto(a\mapstob)}-1}(ya\mapstoyb
    end
```

Let $\boldsymbol{y} \boldsymbol{a}, \boldsymbol{y} \boldsymbol{b}$ be variable initialised to $\boldsymbol{x} \boldsymbol{a}$ and $\boldsymbol{x} \boldsymbol{b}$

$$
\begin{aligned}
& \text { final }= \\
& \text { when } \\
& y b=0 \\
& \text { then } \\
& R:=y a \\
& \text { end }
\end{aligned}
$$

$$
\begin{aligned}
& \text { progress }= \\
& \text { when } \\
& \quad y b \neq 0 \\
& \text { then } \\
& \quad y a \mapsto y b:=y b \mapsto y a \bmod y b \\
& \text { end }
\end{aligned}
$$

Can be manage by a refinement step, theorems in the instantiated context or a plugin

Using JRA's merging rules we obtain the following algorithm:

$$
\begin{aligned}
& y a \mapsto y b:=x a \mapsto x b \\
& \text { while } y b \neq 0 \text { do } \\
& \quad y a \mapsto y b:=y b \mapsto y a \bmod y b \\
& \text { od; } \\
& R:=y a
\end{aligned}
$$

- Instantiate a development is possible
- More schemata on recursive functions are developed
- with a stack (2 loops)
- without stack if r is also a function
(we can calculate the previous value
- only one loop when $\operatorname{ran}(r)=S \backslash\left\{x_{0}\right\}$ and r is also a function

