
Schemata of Recursive Functions and Iterative

Algorithms

Dominique Cansell (Lessy, EBRP)

dominique.cansell@gmail.com

June 2024

1



Outline 1

• JRA proposed a new instantiation context in 2020

• A tool was developed in the EBRP project (L. Voisin, G. Verdier)

• No machine instantiation (for the moment)

• Explanation on recursive functions

• I used recursive schemata to teach recursion (1990-2000)

2



Principle very simple 2

• A machine can see a context

• If we instantiate a context we can have the instantiated machine for free

• Let be a context which defines a total order on a set V

• Let be a refinement chain of a sort algorithm. The last one can be transform to
an algorithm.

• If you instantiate the context with a concrete relation. If you prove (Instantiated
PO) that the relation is a total order. You can have an sort algorithm for free.

3



Remember 3

Theorems between Closure an Well-founded Relation

Let r be a relation (r ∈ S ↔ S) then its transitive closure is defined

by a fixpoint and

• if r is well-founded then closure(r) is also well-founded and

∀x · x ∈ S⇒ x /∈ closure(r−1)[{x}]

• if r is well-founded and r−1 ∈ S 7→ S then

finite(closure(r−1)[{x}]))

4



Remember 4

Recursive functions are defined with a well-founded relation and the

fixpoint theorem.

- Let r be a well-founded relation on S: r ∈ S↔ S

- Let g be a function such that: g ∈ (S × (S 7→ T ))→ T

- There is a unique total function fr: fr ∈ S→ T

such that we have:

∀x · x ∈ S ⇒ fr(x) = g(x 7→ r−1[{x}] � fr)

More on g: ∀x, h · x 7→ h ∈ dom(g)⇒ r−1[{x}] ⊆ dom(h)

5



Remember 5

- The value of fr at x depends on its values on the set r−1[{x}],
FrSB is a function (an operator) which gives the recursive fonction

fr:

fr = FrSB(r 7→ g)

Thanks to WD PO when we use FrSB(R 7→ G) R must be a

well-founded relation and G a function

FrSB means recursive Function (from) S (to) B

6



Remember 6

Many recursive functions have only one recursive call then r−1[{x}]
is empty (base case) or a singleton then r−1 is a function. In this

case we define the function (operator) FrSB1 where

FrSB1(r 7→ f0 7→ f) = FrSB(r 7→ g) and

g = {x, h, b · x ∈ S ∧ h ∈ S 7→B ∧ r−1[{x}] ⊆ dom(h)∧
(x /∈ ran(r)⇒ b = f0(x))∧
(x ∈ ran(r)⇒ b = f(x 7→ h(r−1(x))))

| x 7→ h 7→ b}

7



Remember 7

in this case we have the following THEOREMS

∀x · x ∈ S ∧ x /∈ ran(r) ⇒ fr(x) = f0(x) and

∀x · x ∈ S ∧ x ∈ ran(r) ⇒ fr(x) = f(x 7→ fr(r−1(x)))

More classical

8



Terminal Recursion 8

A function fr is terminal recursive if

fr = FrSB1(r 7→ f0 7→ f) and f(x 7→ y) = y

then we have

∀x · x ∈ S ∧ x ∈ ran(r) ⇒ fr(x) = fr(r−1(x))

The function (operator) FrSB1Ter gives the function :

fr = FrSB1Ter(r 7→ f0) .
9



An abstract machine 9

Let fr equals FrSB1Ter(r 7→ f0) and x ∈ S, a variable R , an

event which computes fr(x) in one shot

final = then R := fr(x) end

10



A refinement 10

Let y be a variable initialised to x with the invariant fr(x) = fr(y)

final = when y /∈ ran(r) then R := f0(y) end

progress = when y ∈ ran(r) then y := r−1(y) end

The invariant is: y ∈ S ∧ fr(x) = fr(y)

The variant is trivially closure(r−1)[{y}] then progress cannot take

the control forever.

11



An algorithm 11

Using JRA’s merging rules we obtain the following algorithm:

y := x;
while y ∈ ran(r) do
y := r−1(y)

od;
R := f0(y)

12



An example: gcd with mod 12

We can define gcdmod with the following definition:

gcdmod

=

FrSB1Ter({a, b · b > 0 ∧ a > b|
(b 7→ a mod b) 7→ (a 7→ b)}
7→ (λx 7→ y · x > y ∧ y ≥ 0 | x))

After proving that the relation is well-founded we got for free:

∀a · a > 0 ⇒ gcdmod(a 7→ 0) = a and

∀a, b · a > b ∧ b > 0

⇒ gcdmod(a 7→ b) = gcdmod(b 7→ (a mod b))

13



A refinement for free 13

Let ya, yb be variable initialised to xa and xb

final =
when
ya 7→ yb /∈ ran({a, b · b > 0 ∧ a > b|(b 7→ a mod b) 7→ (a 7→ b)})

then
R := (λx 7→ y · x > y ∧ y ≥ 0 | x)(ya 7→ yb))

end

progress =
when
ya 7→ yb ∈ ran({a, b · b > 0 ∧ a > b|(b 7→ a mod b) 7→ (a 7→ b)})

then
ya 7→ yb := {a, b · b > 0 ∧ a > b|(b 7→ a mod b) 7→ (a 7→ b)}−1(ya 7→ yb)

end

with the invariant
ya 7→ yb ∈ {a 7→ b|a > b ∧ b ≤ 0} ∧ gcdmod(xa 7→ xb) = gcdmod(ya 7→ yb)

The variant: closure({a, b · b > 0 ∧ a > b|(b 7→ a mod b) 7→ (a 7→ b)}−1)[{ya 7→ yb}]

14



A refinement for free 14

Let ya, yb be variable initialised to xa and xb

final =
when
ya 7→ yb /∈ ran({a, b · b > 0 ∧ a > b|(b 7→ a mod b) 7→ (a 7→ b)})

then
R := (λx 7→ y · x > y ∧ y ≥ 0 | x)(ya 7→ yb))

end

progress =
when
ya 7→ yb ∈ ran({a, b · b > 0 ∧ a > b|(b 7→ a mod b) 7→ (a 7→ b)})

then
ya 7→ yb := {a, b · b > 0 ∧ a > b|(b 7→ a mod b) 7→ (a 7→ b)}−1(ya 7→ yb)

end

15



A refinement for free 15

Let ya, yb be variable initialised to xa and xb

final =
when
yb = 0

then
R := ya

end

progress =
when
yb 6= 0

then
ya 7→ yb := yb 7→ ya mod yb

end

Can be manage by a refinement step, theorems in the instantiated context or a
plugin

16



An algorithm 16

Using JRA’s merging rules we obtain the following algorithm:

ya 7→ yb := xa 7→ xb;
while yb 6= 0 do
ya 7→ yb := yb 7→ ya mod yb

od;
R := ya

17



Conclusion 17

• Instantiate a development is possible

• More schemata on recursive functions are developed

– with a stack (2 loops)

– without stack if r is also a function

(we can calculate the previous value

– only one loop when ran(r) = S \ {x0}
and r is also a function

18


