Schemata of Recursive Functions and lterative
Algorithms

Dominique Cansell (Lessy, EBRP)

dominique.cansell@gmail.com

June 2024

Outline

e JRA proposed a new instantiation context in 2020

e A tool was developed in the EBRP project (L. Voisin, G. Verdier)

e No machine instantiation (for the moment)

e Explanation on recursive functions

e | used recursive schemata to teach recursion (1990-2000)

Principle very simple 2

e A machine can see a context

e If we instantiate a context we can have the instantiated machine for free

e Let be a context which defines a total order on a setV

e Let be arefinement chain of a sort algorithm. The last one can be transform to
an algorithm.

e If you instantiate the context with a concrete relation. If you prove (Instantiated
PQO) that the relation is a total order. You can have an sort algorithm for free.

Remember 3

Theorems between Closure an Well-founded Relation

Let r» be a relation (» € S <+ S) then its transitive closure is defined

by a fixpoint and

e if r is well-founded then closure(r) is also well-founded and

Ve -x € S=x & closure(r—1)[{z}]

o if r is well-founded and r—! € § -+ S then
finite(closure(r—1)[{z}]))

Remember 4

Recursive functions are defined with a well-founded relation and the

fixpoint theorem.

- Let » be a well-founded relationon S§: re€ S+ S
- Let g be a function such that: ge(SXx(S+T))—T
- There is a unique total function fr: freS—T

such that we have:
Ve-z €S = fr(z) =g(x— r—[{z}] < fr)

More on g: Va, h - & — h € dom(g) = r~[{z}] C dom(h)

Remember S

- The value of fr at depends on its values on the set r—1[{x}],

FrSB is a function (an operator) which gives the recursive fonction

fr:
fr = FrSB(r — g)

Thanks to WD PO when we use FrSB(R — G) R must be a

well-founded relation and G a function

FrSB means recursive Function (from) S (to) B

Remember 6

Many recursive functions have only one recursive call then r ~1[{z}]

1

IS empty (base case) or a singleton then »—* is a function. In this

case we define the function (operator) F'rSB1 where
FrSB1(r — fO0— f) = FrSB(r — g) and

g={x,h,b-zc € SAhE S+ BAr—[{x} C dom(h)A
(x & ran(r) = b = f0(x))A
(x € ran(r) = b= f(x — h(r—1(x))))
| € — h — b}

Remember

in this case we have the following THEOREMS
Ve-x € SAx & ran(r) = fr(x) = fO0(x) and
Ver-x € SAx € ran(r) = fr(z) = f(x — fr(r—1(x)))

More classical

Terminal Recursion

A function fr is terminal recursive if
fr=FrSB1(r — fO— f)and f(x — y) =y
then we have

Ve-x € SAx € ran(r) = fr(z) = fr(r—1(x))

The function (operator) F'rSB1T er gives the function :

fr = FrSBl1Ter(r — f0).

An abstract machine 9

Let fr equals FrSB1Ter(r — f0) and x € S, avariable R , an

event which computes fr(x) in one shot

final = then R := fr(x) end

A refinement 10

Let y be a variable initialised to « with the invariant fr(x) = fr(y)

final = when y € ran(r) then R := f0(y) end

progress = when y € ran(r) then y := r~1(y) end

The invariantis: y € S A fr(x) = fr(y)

The variant is trivially closure(r—1)[{y}] then progress cannot take

the control forever.

An algorithm

11

Using JRA’s merging rules we obtain the following algorithm:

Y = ;

while y € ran(r) do
y =1 (y)
od;

R := fO(y)

An example: gcd with mod

We can define gedmod with the following definition:

gcdmod

FrSB1Ter({a,b-b > 0Aa > b|
(b — a mod b) — (a — b)}
= (Ar—y-c>yAy>0]|x))

After proving that the relation is well-founded we got for free:
Va-a >0 = gedmod(a — 0) = a and
Va,b-a>bANb>0

= gcdmod(a — b) = gedmod(b — (a mod b))

A refinement for free

13

Let ya, yb be variable initialised to xa and xb

final =
when
ya — yb & ran({a,b-b >0Aa > b|(b— a mod b) — (a—b)})
then
R=Xx—y-x>yAy>0]|zx)(ya— yd))
end
progress =
when
ya — yb € ran({a,b-b >0Aa > b|(b+— amodb) — (a—b)})
then
ya — yb:= {a,b-b>0Aa > b|(b— amodbd) — (a— b))} (ya — yb)
end

with the invariant
ya — yb € {a— bla>bAb< 0} N gedmod(xa — xb) = gecdmod(ya — yb)

The variant: closure({a,b-b > 0 A a > b|(b — a mod b) — (a — b)}) [{ya — yb}]

A refinement for free

14

Let ya, yb be variable initialised to xa and xb

final =
when
ya — yb & ran({a,b-b >0Aa > b|(b— a mod b) — (a—b)})
then
R=Xx—y-x>yAy>0]|zx)(ya— yd))
end
progress =
when
ya — yb € ran({a,b-b >0Aa > b|(b+— amodb) — (a—b)})
then
ya — yb:= {a,b-b>0Aa > b|(b— amodbd) — (a— b))} (ya — yb)
end

A refinement for free 15

Let ya, yb be variable initialised to xa and xb

final =
when
yb=20
then
R := ya
end
progress =
when
yb # 0
then
ya — yb := yb — ya mod yb
end

Can be manage by a refinement step, theorems in the instantiated context or a
plugin

An algorithm

16

Using JRA’s merging rules we obtain the following algorithm:

ya — yb := xa — xb;

while yb # 0 do

ya — yb := yb — ya mod yb
od;
R := ya

Conclusion

17

e Instantiate a development is possible

e More schemata on recursive functions are developed
— with a stack (2 loops)

— without stack if r is also a function

(we can calculate the previous value

— only one loop when ran(r) = S \ {xg}

and 7 is also a function

