Constructing an Event-B Model using Promise-Driven Modeling

Felix Schaber, Rodin Workshop, 10.06.2025

©Hitachi Rail, Ltd. 2025, All rights reserved

Motivation

Formal modeling can provide strong safety assurances

 \rightarrow But resource intensive to perform

Breaking changes to initial assumptions are typically more resource intensive the later they are performed

 \rightarrow Getting the initial modeling decisions right is important

The Challenge

Where to start?

Types of complexity

Domain Complexity

Modeling Complexity

Incremental model development in Event-B

Event-B Refinement

Helps to build and verify the model step-by-step Refinement structure is influenced by the order of modeling

→ can strongly affect required effort to discharge Proof Obligations

- \rightarrow ordering heuristic desirable
- → increase chances that early modeling decision do not require incompatible changes later

Derive Event-B Model from domain description

 \rightarrow Heuristic when to model what parts of the domain

 \rightarrow Minimize likelihood that model decisions need to revisited later

Apply approach to case study from the railway domain

Methods

System Theoretic Process Analysis (STPA) for hazard analysis → Find which safety constraints the model shall keep → Focus on parts with the greatest immediate benefit from formal modeling

Promise modeling for domain description and prioritization

- \rightarrow Domain knowledge are expressed as promises
- \rightarrow Also describes dependencies on other parts of the system
- \rightarrow Prioritization heuristic

Promise Theory

Promise

- -Promise (π_n) represents intended behaviour
- -Made between Sender (S) and Receiver (R)
- –Promise body (p) represents formalized content
- -Can be (partially) kept or broken

Stability

-Dependable cooperation requires matching promises

Dependencies

-Body can be conditional on keeping of promise by another agent (*c*)

Prioritization heuristic

Model parts least likely to require breaking changes first

Promise Driven Development

Moving Block System

Moving Block System

Case Study Overview

Train protection

- -Simplified model of the European train control system (ETCS)
- -Moving Block System (MBS) allow train movements by issuing movement authorities (MA)
- -Train On-board-unit (OBU) applies brakes to keep train within MA

System goal

- -Prevent the collision of trains
- \rightarrow Need to detect presence of trains

Train presence

- -Detected by fixed trackside train detectors (TTD)
- -Reported by train position reports

Focus on the system ability to enforce the movement authority

0	
\mathbf{V}	

Findings during the case study

Which promises are modelled first?

- \rightarrow mainly physical promises
- \rightarrow often in turn have less reliable dependencies (e.g.
- physical braking conditions on the track)
- → typically leads to modelling promises not directly observable by MBS first
- Decisions how to represent the domain concepts within Event-B remains
 - -e.g. model individual train cars?
 - -e.g. create new trains or modify existing trains when splitting or joining trains?

Event-B model

Successfully constructed event-B model using this approach

Promises are traced the parts they affect in the Event-B Code

- \rightarrow Can simulate the effects of promise braking
- \rightarrow Facilitates model re-use, as it is immediately clear which parts of the model depend on a given promise

All Proof obligations could be discharged even when the model process lead to target properties being introduced late in the modelling process

Conclusion

- Likelihood of change provided a useful heuristic to decide when to model what part of the system
- Promises allowed to reason about stability and likelihood of change
- Representation and encoding of concepts in Event-B remains an important task of the modeller

More information

Questions?

Felix Schaber, Atif Mashkoor and Michael Leuschel "Promise-Driven Modeling: A Structured Approach for Modeling Cyber-Physical Systems" To appear in FMICS 2025