
Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Verification of Event-B proofs through their translation to
Lambdapi

Jean-Paul Bodeveix, Anne Grieu

INP - IRIT
Université de Toulouse

Équipe ACADIE

June 2025

1 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Context

2 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Context - ICSPA 1 Project : Dedukti/Lambdapi as pivot language

Event-B
Atelier BTLAPS

Zenon Modulo
Automated
provers
CVC5, Vampire, . . .

FOL
Dedukti/Lambdapi

Set theory

ICSPA Partners
• SAMOVAR
• INRIA Nancy
• INRIA

Paris-Saclay
• IRIT
• LIRMM
• CLEARSY

1. https://icspa.inria.fr/fr/
3 / 32

https://icspa.inria.fr/fr/

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Event-B to Lambdapi

Goal
• Transform an Event-B proof tree to a Lambdapi script.
• Verification of the proof by Lambdapi.

Issues
• Describe the mathematical language of Event-B
• Describe rewrite rules and deduction rules of Event-B
• Take into account features of Rodin proof framework
• Build a faithful (parallel) trace of the Rodin proof tree in the Lambdapi script.

4 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Event-B to Lambdapi

5 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Lambdapi : Logical framework based on λΠ-Calculus Modulo Theory
« Lambdapi is an interactive proof system featuring dependent types like in
Martin-Lőf’s type theory, but allowing to define objects and types using orien-
ted equations, aka rewriting rules, and reason modulo those equations. » 2

λΠ terms
t , t ′ ::= V variable

| TYPE sort for types
| Π (V : t), t ′ dependent product type
| λ (V : t), t ′ abstraction
| t t ′ application
| t → t ′ abbreviation for Π (V : t), t ′ when V /∈ t ′

Rules
r ::= t ↪→ t ′ reasoning modulo rewriting rules

2. https://lambdapi.readthedocs.io/en/latest/about.html
6 / 32

https://lambdapi.readthedocs.io/en/latest/about.html

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Embedding Event-B in Lambdapi

Event-B theory expressed in Lambdapi, so we can check proofs based on this theory
with Lambdapi.

Event-B

Lambdapi

Mathematical
language Set theory Proof system

Specific libraries
extract of
lambdapi-stdlib
+ specific lib

Lambdapi tactics + spe-
cific theorems

7 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

First order logic 3

The mathematical language of Event-B is based on first order classical logic.
We manage to use part of the lambdapi-stdlib, a library written to cover a large part of
common logics, to express a logic similar to the one of Event-B.
Propositional logic

constant symbol Prop : TYPE;
// Associates a type of a proof to a proposition
injective symbol π : Prop → TYPE;

Types of datatypes

constant symbol Set : TYPE;
// Associates a type to a datatype
injective symbol τ : Set → TYPE;

3. Standard library : https://github.com/Deducteam/lambdapi-stdlib
8 / 32

https://github.com/Deducteam/lambdapi-stdlib

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Axiomatisation of first order logic - some excerpt
Conjunction

constant symbol ∧ : Prop → Prop → Prop;
notation ∧ infix left 7;
constant symbol ∧i p q : π p → π q → π (p ∧ q);
symbol ∧e1 p q : π (p ∧ q) → π p;
symbol ∧e2 p q : π (p ∧ q) → π q;

Implication (Coq style)

constant symbol ⇒ : Prop → Prop → Prop;
notation ⇒ infix right 5;
rule π (p ⇒q) ↪→ π p → πq;

Classical logic - axiom

symbol em p : π (p ∨ ¬ p); // excluded middle

Related sequents
for conjunction

Γ ⊢ p Γ ⊢ q

Γ ⊢ p ∧ q
(∧i)

Γ ⊢ p ∧ q

Γ ⊢ p
(∧e1)

Γ ⊢ p ∧ q

Γ ⊢ q
(∧e2)

9 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Event-B set theory

Event-B types :
σ ::= σP σ power set

| σ σ× σ cartesian product
| σBOOL | σZ built-in boolean and integer types
| σS for each user declared set S

In lambdapi :

injective symbol σP: Set → Set; // power set
injective symbol σ×: Set → Set → Set; // cartesian product
notation σ× infix left 24;
constant symbol σBOOL: Set;
constant symbol σZ: Set;
constant symbol σS: Set; // for each user declared set S

10 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Set operators

Classical set operators of Event-B derive from membership operator :

symbol ∈ [T:Set] : τ T → τ (σP T) → Prop;
// extensionnality axiom
symbol ext [T] (e1 e2: τP T): π (`∀ x, x ∈ e1 ⇔ x ∈ e2) → π (e1 = e2);

Generic maximal set BIG

constant symbol BIG [T:Set]: τ (σP T); // set of all elements of type τ T
rule $x ∈ BIG ↪→ ⊤; // BIG is maximal: contains all elements of type τ T
rule P BIG ↪→ BIG; // power set of BIG is a maximal set
rule BIG × BIG ↪→ BIG; //cartesian product of two maximal sets is maximal

11 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Derived operators
// derived set operators with rules
constant symbol ∩ [T1 T2:Set]: (τ T1 → τP T2) → τP T2;
rule $x ∈ $s1 ∩ $s2 ↪→ $x ∈ $s1 ∧ $x ∈ $s2;
//pairs
injective symbol 7→ [T1 T2:Set] (x: τ T1) (y: τ T2): τ (T1 σ× T2);
// binary relations
symbol ↔ [T1 T2:Set] (A: τ (σP T1)) (B: τ (σP T2)): τ (σP (σP (T1 σ× T2)

)) := P (A × B); notation ↔ infix 11;
// domain
constant symbol dom [T1 T2:Set]: τ (σP (T1 σ× T2)) → τ (σP T1);
notation dom prefix 30;
rule $x ∈ dom($r) ↪→ `∃ y, $x 7→ y ∈ $r;
// ran, relations, partial functions, total functions
constant symbol ↠ [T1 T2:Set]: τP T1 → τP T2 → τP (σP (T1 σ× T2));
notation ↠ infix 11;
rule $f ∈ $A ↠ $B ↪→ (dom $f) = $A ∧ $f ∈ $A 7↠ $B;

12 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

From an Event-B proof tree to a Lambdapi proof script

13 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Event-B proof system

Event-B
• Inference rules and rewriting rules on hypotheses or goal
• Simplification rules
• Introduction of lemmas.
• Combination of rules (GenMP, . . .)
• Call to internal and external provers

14 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Translation of Rodin proof tree

bps file ⇝
list of PO ⇝

PO proofs

15 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Translation of Rodin proof tree

bps file ⇝
list of PO ⇝

PO proofs

• detection of sets, constants in the proof tree
⇝ Lambdapi declarations

• treatment of nodes of Event-B proof tree
⇝ Lambdapi script

• implicit simplifications
• equivalence based rewriting
• reflexion based proof
• integration of SMT and internal provers

proofs (call of Zenon Modulo)

16 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Translation of Rodin proof tree

• detection of sets, constants in the proof tree ⇝Lambdapi declarations• treatment of nodes of Event-B proof tree⇝ Lambdapi script• implicit simplifications• equivalence based rewriting• reflexion based proof• integration of SMT and internal provers proofs (call of
Zenon Modulo)

17 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Details of the proof - All intro

H ⊢ P(x)
H ⊢ ∀x ˙P(x)

18 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Details of the proof - All intro

H ⊢ P(x)
H ⊢ ∀x ˙P(x)

19 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Details of the proof - Conjunction intro

H ⊢ P H ⊢ Q
H ⊢ P ∧ Q

20 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Details of the proof - Conjunction intro

H ⊢ P H ⊢ Q
H ⊢ P ∧ Q

21 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Details of the proof - Conjunction intro

H ⊢ P H ⊢ Q
H ⊢ P ∧ Q

22 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Types, constants, hypotheses

First step through the proof tree
The plug-in extracts declared sets, constants, hypotheses that are available in the proof
tree to declare them in the Lambdapi script.

Hypotheses
The plug-in creates a mapping between Event-B hypotheses and Lambdapi identifiers.

23 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Types

public void generate(IPRProof p) throws RodinDBException, CoreException {
out. println ("//␣types");
sets . clear () ;
List<String> csts = new LinkedList<>();
for (String s : p.getSets()) {
sets .add(s);
if (knownSets.contains(s)) continue ;
knownSets.add(s);
out. println ("constant␣symbol␣σ"+s+":␣Set;");
out. println ("constant␣symbol␣σ"+s+"_elem␣:␣τ␣σ"+s+";␣//␣not␣empty");
out. println ("symbol␣"+s+":␣τP␣σ"+s+"␣:=␣BIG;");
out. println ("symbol␣ax_in_"+s+":␣π␣(`∀␣(X:␣τ␣σ"+s+"),␣X␣∈␣"+s+")␣:=␣λ␣_,␣⊤i ;");

}
...

24 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Proof nodes

Proof tree
Recursive path through the proof tree.
Syntactic research with the name of the rule of the node and the plug-in apply the right
processing.

Example of processing
• True goal in Event-B corresponds to applying ⊤i : π⊤ constructor in Lambdapi.
• To split a n-ary conjunction : apply a proof-term schema :

refine (∧i [P1 ∧ (P2 ∧ P3)] _ (∧i [P2] [P3] _ _)){...}{...}{...};

25 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Simple rules
True goal

} else if (rn . startsWith("⊤␣goal")) {
out. println (tab+"refine␣⊤i ;");

}

Split conjunction

} else if (rn . startsWith("∧␣goal")) {
out. println (tab+"apply␣"+genSplit(g,g.getTag()));
for (IProofTreeNode c : children) {
out. println (tab+"{");
generate(hnum, tab+"␣␣",p,pt,c);
out. println (tab+"}");

}
}

26 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Remove membership
Set operators defined with rule in Lambdapi upon ∈. Deal with :

• Event-B automatically split the conjunctions in the terms
• keep a trace of the Event-B step in the Lambdapi script when a rule is used

} else if (rn . startsWith("remove␣∈␣in␣goal")) {
if (children . length > 1) {
Expression rhs = ((RelationalPredicate)g).getRight() ;
out. println (tab+"apply␣"+genSplit(rhs,rhs.getTag())) ;
for (IProofTreeNode c : children) {
out. println (tab+"{");
generate(hnum, tab+"␣␣",p,pt,c);
out. println (tab+"}");

}
} else {
Predicate ng = children [0]. getSequent().goal() ;
out. println (tab+"␣␣refine␣((λ␣__:␣π␣("+Formula2LP.translate(ng)+"),␣__)␣_);␣//" + ng);
generate(hnum, tab,p,pt, children [0]) ;

}

27 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Proof by reflexion
Eliminate quantification over product types
Meta theorems are proved and instanciated with the help of the plug-in.

} else if (rn . startsWith("remove␣⊆␣in␣goal")) {
Expression e1 = (Expression) g. getChild(0) ;
Expression e2 = (Expression) g. getChild(1) ;
Predicate ng = children [0]. getSequent().goal() ;
Type t = e1.getType().getBaseType();
if (t instanceof ProductType) {

String lam = "(λ␣__,␣meta.allprod.NotAll␣(__␣∈␣("+Formula2LP.translate(e1)+ ")␣⇒␣
__␣∈␣("+Formula2LP.translate(e2)+")))";

out. println (tab+"refine␣((let ␣___␣:␣π␣(("+Formula2LP.translate(ng)+")␣⇒␣("+
Formula2LP.translate(g)+ "))␣:=␣∧e2␣(meta.allprod.elimAllProd_eqv␣"+toBProd(t)+"␣"+lam
+")␣in␣___)␣_);");

}
generate(hnum, tab,p,pt, children [0]) ;

}

28 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

A more complex example

Simplification rewrites 4

Lots of simplification rules in Event-B.

Three ways
• Use Lambdapi rewrite rules ⇝ no proof information
• Equivalence rewriting (setoid rewrite) with Plug-in generated proofs
• Equivalence rewriting (setoid rewrite) with Lambdapi generated proofs

4. https://wiki.event-b.org/index.php/All_Rewrite_Rules
29 / 32

https://wiki.event-b.org/index.php/All_Rewrite_Rules

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Simplification rewrites 1/3

else if (rn . startsWith(" simplification ␣ rewrites ")) {
assert (children . length == 1);
IAntecedent h = r.getAntecedents() [0];
int i = 0;
for (IHypAction a : h.getHypActions()) {

if (!(a instanceof IRewriteHypAction)) continue ;
IRewriteHypAction rw = (IRewriteHypAction) a;
for (Predicate hyp: rw.getHyps()) {

Function<Predicate,Result<Predicate>> S = genRepeat(genSimplify);
Result<Predicate> R = S.apply(hyp);
String tac = R.tac(); // get equivalence proof
Predicate nhyp = R.pred(); //get simplified predicate
Predicate rdhyp=hyp.rewrite(REWRITER);
if (!rdhyp.equals(nhyp)) ... // divergence of the proof tree

30 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

GenerateLP

31 / 32

Context Event-B to Lambdapi From an Event-B proof tree to a Lambdapi proof script

Conclusions

• Following Rodin proofs is hard – undocumented side effects (e.g. flattening of
associative operators), large set of simplification rules and tactics

• Generation of proof terms through the plug-in
• Generation of proof terms through Lambdapi
• Proofs by reflexion

Missing
• language to express rules and automatic translators to LambdaPi

(should be part of Rodin...)
• automatic translation of Rodin internal rules
• dedicated lambdaPi tactics

32 / 32

	Context
	Event-B to Lambdapi
	From an Event-B proof tree to a Lambdapi proof script

