
Interactive Proving with ProB

Katharina Engels, Jan Gruteser , and Michael Leuschel

Faculty of Mathematics and Natural Science, Institute of Computer Science,
Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf

{katharina.engels,jan.gruteser,michael.leuschel}@hhu.de

ProB [5] is a tool for validating formal specifications and supports model
checking and animation for B and Event-B models. ProB can also be used
to prove Event-B proof obligations (PO) using its disprover [3]. Currently, an
interactive proof feature for POs exported from Rodin is being developed, using
the ProB animator and a Prolog specification of proof rules. It enables users
to construct proofs for formal models step by step. The goal is to improve the
traceability and understanding of proofs, which can be useful in educational
settings where students are learning formal methods and how to mathematically
verify the correctness of a system.

For our implementation, we make use of Rodin’s inference and rewrite rules1,
but also of rules from [1], and specify them in Prolog. This turns the mathematical
definitions into executable Prolog rules, that can be used in a prover. Moreover,
by targeting ProB’s XTL interface2 we can turn the Rodin proof rules into a
labelled transition system, with sequents as states and applications of proof rules
as transitions between sequents. The core is a definition of a ternary transition
predicate trans(Label,StateBefore,StateAfter):

trans(simplify_goal(Rule),sequent(Hyps,Goal,Cont),

sequent(Hyps,NewGoal,Cont)) :- simp_rule(Goal,NewGoal,Rule).

trans(imp_r,sequent(Hyps,implication(G1,G2),Cont),

sequent(Hyps1,G2,Cont)) :- add_hyp(G1,Hyps,Hyps1). [...]

simp_rule(member(X,SetA),equal(X,A),'SIMP_IN_SING') :-

singleton_set(SetA,A).

Using ProB’s XTL mode allows us to animate the proof of a PO, with each
animation step corresponding to the application of a proof rule. We can also use
ProB’s model checker to search for proofs of a PO, and use ProB’s visualisation
features to display proofs. Initially, all POs of a machine exported from Rodin are
available as start transitions. For this, we use the export of POs in Prolog format
created by the ProB disprover. The Prolog representation is then normalised
according to ProB’s WD prover [4]. By using the same format as the WD prover,
we can later integrate the proof rules into the ProB core.

Figure 1 shows ProB2-UI [2] with an example PO of a traffic light system
coordinating pedestrians and cars that needs to be proven. The state view
lists the hypotheses and the goal that can be proven with a set of already
implemented Rodin proof rules, displayed as transitions to the left of the state

1 https://wiki.event-b.org/index.php/Inference Rules,
https://wiki.event-b.org/index.php/All Rewrite Rules

2 See https://prob.hhu.de/w/index.php?title=Other languages.

https://orcid.org/0009-0006-4228-404X
https://orcid.org/0000-0002-4595-1518
https://wiki.event-b.org/index.php/Inference_Rules
https://wiki.event-b.org/index.php/All_Rewrite_Rules
https://prob.hhu.de/w/index.php?title=Other_languages


2 Katharina Engels, Jan Gruteser, and Michael Leuschel

Fig. 1: General Overview of ProB2-UI with Current Hypotheses and
the Target Goal, Applicable Proof Rules and State Visualisation

view. A visualisation of the current and previous proof sequent is provided as
well. In addition, it is possible to export the proof steps into a stand-alone HTML
file for later review (cf. Fig. 3).

Future work will include the ability to export the replayed trace (i.e. the
applied rules as on the right in Fig. 2) in a format that can be re-imported
later, allowing users to resume their work. Currently, it is not yet possible to
incorporate user input for rules, which is important for existential or universal
quantifiers. Taking user input into account can also be used to add hypotheses or
custom proof rules, making the proof process more dynamic and increasing the
level of interactivity. It might also be interesting to use the ProB model checker
to automatically find a sequence of proof rules that prove the goal. Further ideas
for future development include improving the visualisation to make the proof
clearer and improve the user experience by linking the proof rules to clickable
elements, as in the Rodin proof view.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. J. Bendisposto, D. Geleßus, Y. Jansing, M. Leuschel, A. Pütz, F. Vu, and M. Werth.
ProB2-UI: A Java-based User Interface for ProB. In Proceedings FMICS, LNCS
12863, pages 193–201, 2021.

3. S. Krings, J. Bendisposto, and M. Leuschel. From Failure to Proof: The ProB
Disprover for B and Event-B. In Proceedings SEFM 2015, volume 9276 of LNCS,
pages 199–214. Springer, 2015.

4. M. Leuschel. Fast and Effective Well-Definedness Checking. In Proceedings iFM
2020, volume 12546 of LNCS, pages 63–81. Springer, 2020.

5. M. Leuschel and M. J. Butler. ProB: an automated analysis toolset for the B method.
STTT, 10(2):185–203, 2008.



Interactive Proving with ProB 3

Fig. 2: Visualisation of Current and Previous State and
Overview of the Applied Proof Rules in ProB2-UI

Fig. 3: An Excerpt of the HTML Export of the State Visualisations
and Applied Proof Rules


	Interactive Proving with ProB

